Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Per Kristian Rørstad

Category : Research article

article id 23001, category Research article
Eirik Ogner Jåstad, Niels Oliver Nagel, Junhui Hu, Per Kristian Rørstad. (2023). The location and capacity-dependent price impacts of biofuel production and its effect on the forest industry. Silva Fennica vol. 57 no. 1 article id 23001. https://doi.org/10.14214/sf.23001
Keywords: partial equilibrium model; biofuel location policy; biomass supply; forest-based biofuel; nordic forest sector
Highlights: Large biofuel units prefer regions close to transportation facilities; Forest owners are the main winners if large-scale biofuel production is established; The first production units reduce export, hence should be located at an exporting hub; Biofuel production will reduce the Norwegian export of roundwood to Sweden; Biofuel production increases the local demand and pulpwood prices.
Abstract | Full text in HTML | Full text in PDF | Author Info
Forest-based biofuel stands out as a promising solution to avoid fossil emissions in parts of the transport sector. Biofuel production will need large amounts of forest biomass, collected from a large area. Roundwood is costly to transport compared with other goods. Therefore, the location of forest-based biofuel production is a crucial part of an investment decision. This study analyses the optimal location of biofuel plants in Norway and the implications for the traditional forest sector in the Nordic countries. We test different numbers of production units, different sizes of the units, and various raw materials. The study applies a partial equilibrium model that covers the Norwegian and Nordic forest sectors, with 356 regions in Norway. The results indicate that small biofuel plants have the potential to turn exporting regions into importing regions. Larger biofuel plants are suitable for areas with large harvest activity today or regions with access to harbour or timber terminals along railways. We find that forest owners close to a biofuel plant will profit the most from biofuel production. Policymakers and investors should take into account that different locations and production capacities have different impacts on the forest sectors.
  • Jåstad, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-1089-0284 E-mail: eirik.jastad@nmbu.no
  • Nagel, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-3171-0262 E-mail: niels.oliver.nagel@nmbu.no
  • Hu, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0003-0001-5993 E-mail: junhui.hu@nmbu.no
  • Rørstad, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: per.kristian.rorstad@nmbu.no
article id 141, category Research article
Per Kristian Rørstad, Erik Trømborg, Even Bergseng, Birger Solberg. (2010). Combining GIS and forest modelling in estimating regional supply of harvest residues in Norway. Silva Fennica vol. 44 no. 3 article id 141. https://doi.org/10.14214/sf.141
Keywords: bioenergy; forestry; SGIS; supply functions
Abstract | View details | Full text in PDF | Author Info
New and ambitious targets for renewable energy production put attention to increased supply of biomass. Harvest residues are only to a limited extent demanded by the traditional forest industries and represent an unutilized resource for increased production of renewable energy in Norway. The overall objective of this paper is to study how GIS and forest modelling can be combined to improve estimates of the supply of harvest residues, taking different environmental and economic constraints into consideration. The analyses are based on a case study of a forest area of more than 40 000 ha in Southern Norway divided into about 500 private forest properties. The study was carried out by computations of timber harvest using the forestry scenario model SGIS based on extensive forest inventory data at stand level. In the studied area energy utilization of harvest residues is not profitable below an energy price of about EUR 3.2/GJ (NOK 0.10 /kWh) when the distance from roadside to industry is 20 km. Above this level supply increases rapidly over a rather narrow price range and is nearly inelastic above EUR 4.1/GJ (NOK 0.12/kWh). We did not find significant negative shifts in the residues supply caused by changes in location of roundwood harvest over time. Exclusion of collection from stands with a site index (H40) below 14 reduced the potential supply of residues by 16–27%. The optimisation method combined selection of exogenous variables in order to map observed harvesting level and is probably the best approach to map future harvest.
  • Rørstad, Norwegian University of Life Sciences, Dept of Ecology and Natural Resource Management, Ås, Norway E-mail: per.kristian.rorstad@umb.no (email)
  • Trømborg, Norwegian University of Life Sciences, Dept of Ecology and Natural Resource Management, Ås, Norway E-mail: et@nn.no
  • Bergseng, Norwegian University of Life Sciences, Dept of Ecology and Natural Resource Management, Ås, Norway E-mail: eb@nn.no
  • Solberg, Norwegian University of Life Sciences, Dept of Ecology and Natural Resource Management, Ås, Norway E-mail: bs@nn.no

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles