Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'Burkina Faso'

Category : Research article

article id 10215, category Research article
Korotimi Ouédraogo, Kangbéni Dimobe, Adjima Thiombiano. (2020). Allometric models for estimating aboveground biomass and carbon stock for Diospyros mespiliformis in West Africa. Silva Fennica vol. 54 no. 1 article id 10215. https://doi.org/10.14214/sf.10215
Keywords: Burkina Faso; biometric variables; African ebony; biomass estimation equations; carbon storages; jackalberry; Sudanian savanna
Highlights: Biomass estimation models developed for Diospyros mespiliformis; Models based on DBH alone predicted aboveground biomass with 97.11% accuracy; Published models had relative error between –72% and +98%; Models for branch and stem biomass were more accurate than those for leaf biomass.
Abstract | Full text in HTML | Full text in PDF | Author Info

Accurate estimates of aboveground biomass (AGB) strongly depend on the suitability and precision of allometric models. Diospyros mespiliformis Hochst. ex A. DC. is a key component of most sub-Sahara agroforestry systems and, one of the most economically important trees in Africa. Despite its importance, very few scientific information exists regarding its biomass and carbon storage potential. In this study direct method was used to develop site-specific biomass models for D. mespiliformis tree components in Burkina Faso. Allometric models were developed for stem, branch and leaf biomass using data from 39 tree harvested in Sudanian savannas of Burkina Faso. Diameter at breast height (DBH), tree height, crown diameter (CD) and basal diameter (D20) were regressed on biomass component using non-linear models with DBH alone, and DBH in combination with height and/or CD as predictor variables. Carbon content was estimated for each tree component using the ash method. Allometric models differed between the experimental sites, except for branch biomass models. Site-specific models developed in this study exhibited good model fit and performance, with explained variance of 81–98%. Using models developed from other areas would have underestimated or overestimated biomass by between –72% and +98%. Carbon content in aboveground components of D. mespiliformis in Tiogo, Boulon and Tapoa-Boopo was 55.40% ± 1.50, 55.52% ± 1.06 and 55.63% ± 1.00, respectively, and did not vary significantly (P-value = 0.909). Site-specific models developed in this study are useful tool for estimating carbon stocks and can be used to accurately estimate tree components biomass in vegetation growing under similar conditions.

  • Ouédraogo, University Joseph Ki-Zerbo, UFR/SVT, Laboratory of Plant Biology and Ecology, 03 B.P. 7021 Ouagadougou 03, Burkina Faso E-mail: okorotimi@yahoo.fr (email)
  • Dimobe, University Joseph Ki-Zerbo, UFR/SVT, Laboratory of Plant Biology and Ecology, 03 B.P. 7021 Ouagadougou 03, Burkina Faso; University of Dédougou, Institut des Sciences de l’Environnement et du Développement Rural (ISEDR), BP 139 Dédougou, Burkina Faso; West African Science Service Center on Climate Change and Adapted Land Use, Competence Center, Avenue Muamar Ghadhafi, Ouagadougou, BP 9507, Burkina Faso ORCID https://orcid.org/0000-0001-5536-9700 E-mail: kangbenidimobe@gmail.com
  • Thiombiano, University Joseph Ki-Zerbo, UFR/SVT, Laboratory of Plant Biology and Ecology, 03 B.P. 7021 Ouagadougou 03, Burkina Faso E-mail: adjima_thiombiano@yahoo.fr
article id 1631, category Research article
Jonas Koala, Louis Sawadogo, Patrice Savadogo, Ermias Aynekulu, Janne Heiskanen, Mohammed Saïd. (2017). Allometric equations for below-ground biomass of four key woody species in West African savanna-woodlands. Silva Fennica vol. 51 no. 3 article id 1631. https://doi.org/10.14214/sf.1631
Keywords: root; shoot ratio; Burkina Faso; biomass estimation; species-specific equation; root excavation
Highlights: Species-specific equations for belowground biomass (BGB) predicted biomass with less bias than generic equations; All the generic equations underestimated BGB; For accurate estimation of BGB in savanna-woodlands, species-specific equations are needed for more species.
Abstract | Full text in HTML | Full text in PDF | Author Info

Accurate estimates of both above-ground biomass (AGB) and below-ground biomass (BGB) are essential for estimating carbon (C) balances at various geographical scales and formulating effective climate change mitigation programs. However, estimating BGB is challenging, particularly for forest ecosystems, so robust allometric equations are needed. To obtain such equations for savanna-woodlands of the West African north sudanian zone, we selected four common native woody species (Anogeissus leiocarpa (DC.) Guill. & Perr., Detarium microcarpum Guill. & Perr., Piliostigma thonningii (Schumach.) Milne-Redh. and Vitellaria paradoxa C.F. Gaertn.). At two sites in Burkina Faso, we determined the BGB of 30 trees of each of these species by excavation, and measured various above-ground dimensional variables. The root:shoot ratio varied widely among the species, from 0.1 to 3.4. Depending on the species, allometric equations based on stem basal area at 20 cm height, basal area at breast height and tree height explained 50–95% of the variation in BGB. The best generic equation we obtained, based on basal area at 20 cm, explained 60% of the variation in BGB across the species. Three previously published generic allometric equations underestimated BGB by 8 to 63%. The presented equations should significantly improve the accuracy of BGB estimates in savanna-woodlands and help avoid costly needs to excavate root systems.

  • Koala, Centre National de Recherche Scientifique et Technologique (CNRST), Institut de l’Environnement et de Recherches Agricoles (INERA), Département Productions Forestières, 03 BP 7047, Ouagadougou 03, Burkina Faso E-mail: ezeyamb@yahoo.fr (email)
  • Sawadogo, Centre National de Recherche Scientifique et Technologique (CNRST), Institut de l’Environnement et de Recherches Agricoles (INERA), Département Productions Forestières, 03 BP 7047, Ouagadougou 03, Burkina Faso E-mail: sawadogo_ls@hotmail.com
  • Savadogo, World Agroforestry Centre & International Crop Research Institute for the Semi-Arid Tropics (ICRAF-ICRISAT), West and Central Africa Region-Sahel Node, BP 12404, Niamey, Niger E-mail: savadogo.patrice@gmail.com
  • Aynekulu, World Agroforestry Centre (ICRAF), United Nations Avenue, P.O. Box 30677-00100, Nairobi, Kenya E-mail: e.betemariam@cgiar.org
  • Heiskanen, University of Helsinki, Department of Geosciences and Geography, P.O. Box 68, FI-00014 University of Helsinki, Finland E-mail: janne.heiskanen@helsinki.fi
  • Saïd, International Livestock Research Institute (ILRI). P.O. Box 30709, Nairobi, Kenya E-mail: m.said@cgiar.org
article id 452, category Research article
Catherine Ky-Dembele, Mulualem Tigabu, Jules Bayala, Patrice Savadogo, Issaka Joseph Boussim, Per Christer Odén. (2010). Clonal propagation of Detarium microcarpum from root cuttings. Silva Fennica vol. 44 no. 5 article id 452. https://doi.org/10.14214/sf.452
Keywords: Burkina Faso; sprouting efficiency; rootling; vegetative propagation
Abstract | View details | Full text in PDF | Author Info
Detarium microcarpum is a valuable tree species for fuelwood, timber, food and medicine in sub-Saharan Africa. However, its population is dwindling due to overexploitation, its seedlings’ low survival rate and slow growth. Vegetative propagation might enhance both survival and growth, but to date a successful clonal method does not exist for D. microcarpum. We conducted four experiments to examine the effects of propagation environment (high versus low humidity), cutting length and diameter, alignment of root segments (horizontal versus vertical) and distance from the root collar of donors on the regeneration ability of root segments collected from field-grown D. microcarpum trees in Burkina Faso. The size of root segments significantly affected their regeneration ability, while alignment had no effect. Sprouting was possible from 10 and 20-cm long segments of 15–60 mm diameter with 7–43% sprouting efficiency and multiple shoots while 5 cm long segments were unsuitable with 0–3% sprouting efficiency. Cuttings maintained at low humidity produced larger diameter sprouts than those in greenhouse. All cuttings showed strong polarity with most of the shoots developing at the proximal end. Rootlings from 20 cm root segments produced more new roots (0.62 ± 0.08 g) than those from 10 cm segments (0.34 ± 0.09 g), but they were similar for sprout and leaf growth. We conclude that lateral roots of field-grown mature trees can be used to produce rootlings in a nursery. Since this study is the first attempt to propagate D. microcarpum from root cuttings, further investigations are required to optimize the technique.
  • Ky-Dembele, Département Productions Forestières, Institut de l’Environnement et de Recherches Agricoles, 03 BP 7047 Ouagadougou 03, Burkina Faso & Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 101, SE-230 53 Alnarp, Sweden (catherine.dembele@ess.slu.se) E-mail: kydembele@hotmail.com (email)
  • Tigabu, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 101, SE-230 53, Alnarp, Sweden E-mail: mt@nn.se
  • Bayala, World Agroforestry Centre, West Africa and Centre Regional Office, Sahel Node, BP E5118 Bamako, Mali E-mail: jb@nn.ml
  • Savadogo, Département Productions Forestières, Institut de l’Environnement et de Recherches Agricoles, 03 BP 7047 Ouagadougou 03, Burkina Faso & Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 101, SE-230 53 Alnarp, Sweden E-mail: ps@nn.bf
  • Boussim, Université de Ouagadougou, Unité de Formation et Recherche en Sciences de la Vie et de la Terre, 03 BP 7021, Ouagadougou 03, Burkina Faso E-mail: ijb@nn.bf
  • Odén, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 101, SE-230 53, Alnarp, Sweden E-mail: pco@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles