Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'disturbance regime'

Category : Article

article id 5595, category Article
R.A. Fleming. (1996). A mechanistic perspective of possible influences of climate change on defoliating insects in North America's boreal forests. Silva Fennica vol. 30 no. 2–3 article id 5595. https://doi.org/10.14214/sf.a9240
Keywords: climate change; disturbance regimes; boreal forest dynamics; Abies balsamea; natural selection; North America; Choristoneura fumiferana; insect outbreaks; phenological relationships; plant quality; extreme weather; thresholds
Abstract | View details | Full text in PDF | Author Info

There is no doubt that tree survival, growth, and reproduction in North America's boreal forests would be directly influenced by the projected changes in climate if they occur. The indirect effects of climate change may be of even greater importance, however, because of their potential for altering the intensity, frequency, and perhaps even the very nature of the disturbance regimes which drive boreal forest dynamics. Insect defoliator populations are one of the dominating disturbance factors in North America's boreal forests and during outbreaks trees are often killed over vast forest areas. If the predicted shifts in climate occur, the damage patterns caused by insects may be considerably changed, particularly those of insects whose temporal and spatial distributions are singularly dependent on climatic factors. The ensuing uncertainties directly affect depletion forecasts, pest hazard rating procedures, and long-term planning for pest control requirements. Because the potential for wildfire often increases in stands after insect attack, uncertainties in future insect damage patterns also lead to uncertainties in fire regimes. In addition, because the rates of processes key to biogeochemical and nutrient recycling are influenced by insect damage, potential changes in damage patterns can indirectly affect ecosystem resilience and the sustainability of the multiple uses of the forest resource.

In this paper, a mechanistic perspective is developed based on available information describing how defoliating forest insects might respond to climate warming. Because of its prevalence and long history of study, the spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is used for illustrative purposes in developing this perspective. The scenarios that follow outline the potential importance of threshold behaviour, historical conditions, phenological relationships, infrequent but extreme weather, complex feedbacks, and natural selection. The urgency of such considerations is emphasized by reference to research suggesting that climate warming may already be influencing some insect lifecycles.

  • Fleming, E-mail: rf@mm.unknown (email)

Category : Research article

article id 90, category Research article
Per Angelstam, Kjell Andersson, Robert Axelsson, Marine Elbakidze, Bengt Gunnar Jonsson, Jean-Michel Roberge. (2011). Protecting forest areas for biodiversity in Sweden 1991–2010: the policy implementation process and outcomes on the ground. Silva Fennica vol. 45 no. 5 article id 90. https://doi.org/10.14214/sf.90
Keywords: forest policy; forest protection; restoration ecology; connectivity; green infrastructure; umbrella species; forest disturbance regimes; participation and collaboration
Abstract | View details | Full text in PDF | Author Info
Swedish forest and environmental policies imply that forests should be managed so that all naturally occurring species are maintained in viable populations. This requires maintenance of functional networks of representative natural forest and cultural woodland habitats. We first review the policy implementation process regarding protected areas in Sweden 1991–2010, how ecological knowledge was used to formulate interim short-term and strategic long-term biodiversity conservation goals, and the development of a hierarchical spatial planning approach. Second, we present data about the amount of formally protected and voluntarily set aside forest stands, and evaluate how much remains in terms of additional forest protection, conservation management and habitat restoration to achieve forest and environmental policy objectives in the long-term. Third, a case study in central Sweden was made to estimate the functionality of old Scots pine, Norway spruce and deciduous forest habitats, as well as cultural woodland, in different forest regions. Finally, we assess operational biodiversity conservation planning processes. We conclude that Swedish policy pronouncements capture the contemporary knowledge about biodiversity and conservation planning well. However, the existing area of protected and set-aside forests is presently too small and with too poor connectivity. To bridge this gap, spatial planning, management and restoration of habitat, as well as collaboration among forest and conservation planners need to be improved.
  • Angelstam, School for Forest Management, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Skinnskatteberg, Sweden E-mail: per.angelstam@slu.se (email)
  • Andersson, School for Forest Management, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Skinnskatteberg, Sweden E-mail: ka@nn.se
  • Axelsson, School for Forest Management, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Skinnskatteberg, Sweden E-mail: ra@nn.se
  • Elbakidze, School for Forest Management, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Skinnskatteberg, Sweden E-mail: me@nn.se
  • Jonsson, Dept of Natural Science, Engineering and Mathematics, Mid Sweden University, Sundsvall, Sweden E-mail: bgj@nn.se
  • Roberge, Dept of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden E-mail: jmr@nn.se
article id 76, category Research article
Alessandra Bottero, Matteo Garbarino, Vojislav Dukic, Zoran Govedar, Emanuele Lingua, Thomas A. Nagel, Renzo Motta. (2011). Gap-phase dynamics in the old-growth forest of Lom, Bosnia and Herzegovina. Silva Fennica vol. 45 no. 5 article id 76. https://doi.org/10.14214/sf.76
Keywords: disturbance regime; Lom; old-growth forest; canopy gaps; beech-spruce-fir; small-scale
Abstract | View details | Full text in PDF | Author Info
We investigated forest canopy gaps in the mixed beech (Fagus sylvatica L.), silver fir (Abies alba Miller), and Norway spruce (Picea abies (L.) Karst.) old-growth forest of Lom in the Dinaric Mountains of Bosnia and Herzegovina. Gap size, age, gap fraction, gapmaker characteristics and the structure and composition of gapfillers were documented to investigate gap dynamics. The percentages of forest area in canopy and expanded gaps were 19% and 41%, respectively. The median canopy gap size was 77 m2, and ranged from 11 to 708 m2. Although there were many single tree-fall gaps, the majority had multiple gapmakers that were often in different stages of decay, suggesting gap expansion is important at the study site. Of the gapmakers recorded, 14% were uprooted stems, 60% snapped stems, and 26% were standing dead trees. Dendroecological analysis suggests that gap formation varied in time. The density of gapfillers was not correlated to gap size, and the species composition of gapfillers varied between seedling, sapling, and tree life stages. The results suggest that gaps are mainly formed by endogenous senescence of single canopy trees. Exogenous disturbance agents, most likely related to wind and snow, act mainly as secondary agents in breaking weakened trees and in expanding previously established gaps. Although the findings are partially consistent with other studies of gap disturbance processes in similar old-growth forests in central Europe, the observed gap dynamic places the Lom core area at the end of a gradient that ranges from forests controlled by very small-scale processes to those where large, stand replacing disturbances predominate.
  • Bottero, University of Turin, Department Agroselviter, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy E-mail: alessandra.bottero@unito.it (email)
  • Garbarino, University of Turin, Department Agroselviter, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy E-mail: mg@nn.it
  • Dukic, University of Banja Luka, Faculty of Forestry, Banja Luka, Bosnia and Herzegovina E-mail: vd@nn.ba
  • Govedar, University of Banja Luka, Faculty of Forestry, Banja Luka, Bosnia and Herzegovina E-mail: zg@nn.ba
  • Lingua, University of Padua, Department of TeSAF, Legnaro (PD), Italy E-mail: el@nn.it
  • Nagel, University of Ljubljana, Department of Forestry and Renewable Forest Resources, Ljubljana, Slovenia E-mail: tan@nn.si
  • Motta, University of Turin, Department Agroselviter, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy E-mail: rm@nn.it

Category : Review article

article id 74, category Review article
Philip J. Burton, S. Ellen Macdonald. (2011). The restorative imperative: challenges, objectives and approaches to restoring naturalness in forests. Silva Fennica vol. 45 no. 5 article id 74. https://doi.org/10.14214/sf.74
Keywords: afforestation; disturbance regime; ecological restoration; forest rehabilitation; native species; reclamation
Abstract | View details | Full text in PDF | Author Info
Many of the world’s forests are not primeval; forest restoration aims to reverse alterations caused by human use. Forest restoration (including reforestation and forest rehabilitation) is widely researched and practiced around the globe. A review of recent literature reveals some common themes concerning forest restoration motivations and methods. In some parts of the world, forest restoration aims mainly to re-establish trees required for timber or fuelwood; such work emphasizes the propagation, establishment and growth of trees, and equates with the traditional discipline of silviculture. Elsewhere, a recent focus on biocentric values adopts the goal of supporting full complements of indigenous trees and other species. Such ecosystem-based restoration approaches consider natural templates and a wide array of attributes and processes, but there remains an emphasis on trees and plant species composition. Efforts to restore natural processes such as nutrient cycling, succession, and natural disturbances seem limited, except for the use of fire, which has seen widespread adoption in some regions. The inherent challenges in restoring “naturalness” include high temporal and spatial heterogeneity in forest conditions and natural disturbances, the long history of human influence on forests in many regions of the world, and uncertainty about future climate and disturbance regimes. Although fixed templates may be inappropriate, we still have a reasonably clear idea of the incremental steps required to make forests more natural. Because most locations can support many alternative configurations of natural vegetation, the restoration of forest naturalness necessarily involves the setting of priorities and strategic directions in the context of human values and objectives, as informed by our best understanding of ecosystem structure and function now and in the future.
  • Burton, Canadian Forest Service, Natural Resources Canada, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9 E-mail: Phil.Burton@NRCan-RNCan.gc.ca (email)
  • Macdonald, Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada E-mail: sem@nn.ca
article id 72, category Review article
Ekaterina Shorohova, Daniel Kneeshaw, Timo Kuuluvainen, Sylvie Gauthier. (2011). Variability and dynamics of old-growth forests in the circumboreal zone: implications for conservation, restoration and management. Silva Fennica vol. 45 no. 5 article id 72. https://doi.org/10.14214/sf.72
Keywords: late-successional forest; disturbance regimes; stand dynamic types; cohort dynamics
Abstract | View details | Full text in PDF | Author Info
Due to the unprecedented loss of old-growth forests to harvesting throughout circumboreal regions an understanding of similarities and differences in old-growth dynamics is needed to design effective restoration, management and conservation efforts. This paper reviews concepts, prevalence and variability of old-growth forests across landscapes, and evaluates different stand scale dynamics at the old-growth stage across the circumboreal zone. Old-growth historically dominated many boreal forest landscapes in both Eurasia and North America. Throughout much of North America, and to some extent in western Siberia, the natural prevalence and development of old-growth forests are regulated by the occurrence of stand-replacing fires. In eastern North America and Siberia, insect outbreaks may, however, be more important. Insect outbreaks as well as recurrent non-stand replacing surface fires and windthrows, when occurring at the old-growth stage, often form stands characterized by several tree age-class cohorts. This multi age-class forest development type is common in Europe and eastern Siberia but its prevalence and importance in boreal North-America is not well documented. Similarities in successional dynamics across the circumboreal region are found in the development of mono-dominant even-aged stands, the replacement of shade intolerant tree species by shade tolerant species, as well as in all-aged stands driven by small-scale gap dynamics. The message to land managers is that the focus should not only be on setting aside remaining old-growth forests or in restoring static old-growth attributes, but also in emulating natural disturbances and successional dynamics at landscape and regional scales to maintain natural variability in old-growth attributes through time.
  • Shorohova, Saint-Petersburg State Forest University, Saint-Petersburg, Russia & Finnish Forest Research Institute, Vantaa Research Unit, Vantaa, Finland (ekaterina.shorohova@metla.fi) E-mail: shorohova@ES13334.spb.edu (email)
  • Kneeshaw, Université du Québec à Montréal, Centre d’étude de la forêt, Montreal, Canada E-mail: dk@nn.ca
  • Kuuluvainen, University of Helsinki, Department of Forest Sciences, Helsinki, Finland E-mail: tk@nn.fi
  • Gauthier, Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, Canada E-mail: sg@nn.fi

Category : Research note

article id 7771, category Research note
Māra Kitenberga, Roberts Matisons, Āris Jansons, Jānis Donis. (2018). Teleconnection between the Atlantic sea surface temperature and forest fires in Latvia and Estonia. Silva Fennica vol. 52 no. 1 article id 7771. https://doi.org/10.14214/sf.7771
Keywords: disturbance regime; Atmospheric circulation; weather systems; fire meteorology
Highlights: Forest fire activity in Latvia and Estonia was related to conditions in the Atlantic; Teleconnections differed regionally; Negative correlation between number of fires in Estonia and SST in the North Atlantic was detected; Area of forest fires in Estonia and activity of fires in Latvia were positively correlated with SST in the Baltic, North and Mediterranean Seas in summer.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest fire is one of the natural disturbances, which have important ecological and socioeconomical effect. Although fire activity is driven by weather conditions, during past two centuries forest fires have been strongly anthropogenically controlled. In this study, teleconnection between sea surface temperature (SST) in the Atlantic, which influences climate in Europe, and forest fire activity in Latvia and Estonia was assessed using “Climate explorer” web-tool. Factors affecting number and area of forest fires in Latvia and Estonia differed, suggesting regional specifics. In Estonia, the number of fires correlated with the SST in the North Atlantic in spring and summer, which affects the inflow of cool and dry air masses from the Arctic, hence the aridity and burnability. The area of fires in Estonia and in Latvia was associated with increased SST in Baltic Sea and near the European coast in summer, which likely were consequences of occurrence of warm high-pressure systems in summer, causing hot and dry conditions. Nevertheless, the observed teleconnections could be used to predict activity of forest fires in Latvia and Estonia.

  • Kitenberga, Latvian State Forest Research Institute ‘Silava’, Rigas st. 111, Salaspils, Latvia, LV2169 E-mail: mara.kitenberga@gmail.com (email)
  • Matisons, Latvian State Forest Research Institute ‘Silava’, Rigas st. 111, Salaspils, Latvia, LV2169 E-mail: robism@inbox.lv
  • Jansons, Latvian State Forest Research Institute ‘Silava’, Rigas st. 111, Salaspils, Latvia, LV2169 E-mail: aris.jansons@silava.lv
  • Donis, Latvian State Forest Research Institute ‘Silava’, Rigas st. 111, Salaspils, Latvia, LV2169 E-mail: janis.donis@silava.lv

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles