Current issue: 58(5)
The material of 78 damaged Norway spruce (Picea abies (L.) H. Karst.) trees was gathered in Southern Finland in order to clarify the advance of decay. The harvesting which had caused the scars had been carried out 12 years earlier and at the moment of the investigation the growing stand was 110 years old. It was noticed that the variables used could explain only a few per cent of the variation of the advance of decay. It was concluded that the only important thing in practice is whether the injuries are in roots or in stems.
The PDF includes a summary in English.
The purpose of this study was to explain whether it is possible to affect, in practical working site conditions, by means of logging waste on the strip road, the depth of the track which is formed in terrain transportation and the injuries of the growing stand. Five 20 m long investigation areas with logging waste and five similar areas without logging waste were arranged on one strip road at Teisko logging site in Southern Finland. The logging waste layer was mainly Norway spruce and 10–15 cm thick. A KL–836 B forwarder was used. The type of soil was loam.
The logging waste affected the depth of the track only by decreasing the wear of humus layer. Even decreasing effect of logging waste on the injuries in the growing stand was minor. At Kitee working site in Eastern Finland strip roads were studied. The type of soil was thick, rather mouldered peat. The thickness of logging waste was 3–4 times greater than in Teisko, mainly spruce. A Volvo Nalle SM 460 forwarder was used. The effect of the logging waste on the depth of the tracks was clearly to be noticed. On basis of the appearance of the tracks one could assume that the difference was due to different wear of the humus, and not so much due to the quantity of logging waste that improves the carrying capacity of terrain.
In some extent logging waste was also found to affect the amount and quality of tree injuries. In practical working conditions, the importance might be small, since in the experiments an unrealistically great amount of logging waste was used.
The PDF includes a summary in English.
The aim of the study was to find out what are the causes of damage in different parts of the trees and the frequency of different kinds of injuries. Sample plots were studied in over 80-year old forests in mineral soil sites and peatlands. All the trees over 1.5 m high were felled in the sample plots and the stem injuries were studied. The structure of the stand and the crown classes were recorded. The proportion of undamaged trees was largest in in dominant and codominant trees and increased towards the better forest site types. The typical injuries are listed for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L). H. Karst.) and Betula sp. stands. The injuries were divided in inner and outer form defects and injuries, and defined in more detail by the part of the stem and tree species. Defects caused by decay were analyzed separately.
Healing over of injuries was faster in the better sites. Form defects and other injuries were more common in birch stands than in Scots pine and Norway spruce stands. Decay was most common in birch stands. The pine stands were the healthiest, followed by spruce stands. Fire wound were most usual in pine, butt rot for spruce, and crooks and general decay for birch.
The PDF includes a summary in German.