Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'topography'

Category : Article

article id 5618, category Article
Marja-Leena Nykänen, Marianne Broadgate, Seppo Kellomäki, Heli Peltola, Christopher Quine. (1997). Factors affecting snow damage of trees with particular reference to European conditions. Silva Fennica vol. 31 no. 2 article id 5618. https://doi.org/10.14214/sf.a8519
Keywords: stem breakage; stand management; snow accumulation; topography; risk assessment; snow damage; snowfall; risk model
Abstract | View details | Full text in PDF | Author Info

Within the European Community snow damage affects an estimated 4 million m3 of timber every year, causing significant economic losses to forest owners. In Northern Europe, for example, the occurrence of snow damage has increased over the last few decades mainly due to the increase in total growing stock. The most common form of damage is stem breakage, but trees can also be bent or uprooted. Trees suffering snow damage are also more prone to consequential damage through insect or fungal attacks.

Snow accumulation on trees is strongly dependent upon weather and climatological conditions. Temperature influences the moisture content of snow and therefore the degree to which it can accumulate on branches. Wind can cause snow to be shed, but can also lead to large accumulations of wet snow, rime or freezing rain. Wet snow is most likely in late autumn or early spring. Geographic location and topography influence the occurrence of damaging forms of snow, and coastal locations and moderate to high elevations experience large accumulations. Slope plays a less important role and the evidence on the role of aspect is contradictory. The occurrence of damaging events can vary from every winter to once every 10 years or so depending upon regional climatology. In the future, assuming global warming in northern latitudes, the risk of snow damage could increase, because the relative occurrence of snowfall near temperatures of zero could increase.

The severity of snow damage is related to tree characteristics. Stem taper and crown characteristics are the most important factors controlling the stability of trees. Slightly tapering stems, asymmetric crowns, and rigid horizontal branching are all associated with high risk. However, the evidence on species differences is less clear due to the interaction with location. Management of forests can alter risk through choice of regeneration, tending, thinning and rotation. However, quantification and comparison of the absolute effect of these measures is not yet possible. An integrated risk model is required to allow the various locational and silvicultural factors to be assessed. Plans are presented to construct such a model, and gaps in knowledge are highlighted.

  • Nykänen, E-mail: mn@mm.unknown (email)
  • Broadgate, E-mail: mb@mm.unknown
  • Kellomäki, E-mail: sk@mm.unknown
  • Peltola, E-mail: hp@mm.unknown
  • Quine, E-mail: cq@mm.unknown
article id 5420, category Article
Toyohiro Miyazava, Jukka Laine. (1990). Effect of macroclimate on the development of Scots pine seedling stands on drained oligotrophic pine mires. Silva Fennica vol. 24 no. 2 article id 5420. https://doi.org/10.14214/sf.a15574
Keywords: Pinus sylvestris; fertilization; regeneration; drained peatlands; plantations; ditch spacing; effective temperature sum; microtopography
Abstract | View details | Full text in PDF | Author Info

The influence of different fertilization treatments and ditch spacings on the height growth of young Scots pine (Pinus sylvestris L.) seedling stands growing under various climatic regimes were determined. Comparisons were made between naturally regenerated and planted seedling stands. The effective temperature sum had a stronger effect on the height growth of planted seedlings, and in Northern Finland the planted seedlings seemed to be influenced to a greater degree by the adverse climatic conditions. The heavier the dose of fertilizer that had been applied, the greater the difference in growth caused by macroclimate. A considerably larger proportion of natural seedlings were located on hummocks compared with that of planted seedlings, irrespective of the region. On plots with wider ditch spacings, seedlings growing on hummocks were superior in height growth to those on flat surfaces.

The PDF includes an abstract in Finnish.

  • Miyazava, E-mail: tm@mm.unknown (email)
  • Laine, E-mail: jl@mm.unknown

Category : Article

article id 7109, category Article
Aimo Kaarlo Cajander. (1923). Some outlines of plant topographical studies in Finland. Acta Forestalia Fennica vol. 23 no. 10 article id 7109. https://doi.org/10.14214/aff.7109
Keywords: publication; plant topography; retrospective
Abstract | View details | Full text in PDF | Author Info

The text is a presentation given on the occasion of the yearly meeting of the Finnish Academy of Science and Letters on April 10th 1922. It presents the development of the plant topographic research in Finland with the most influential research and authors and their principal work.

The retrospect covers the publications between 1673 and 1917
  • Cajander, E-mail: ac@mm.unknown (email)
article id 7062, category Article
Aimo Kaarlo Cajander. (1922). Determining concepts for topography of plants. Acta Forestalia Fennica vol. 20 no. 2 article id 7062. https://doi.org/10.14214/aff.7062
Keywords: habitat; vegetation condition; concept; plant topography
Abstract | View details | Full text in PDF | Author Info

The article presents definitions for central concepts that are commonly used in the research of plant topography. The discipline has close connections to defining and classifying forest types.

The concepts defined involve concrete and abstract concepts linked to vegetation conditions and to habitat. 

  • Cajander, E-mail: ac@mm.unknown (email)

Category : Research article

article id 1565, category Research article
Teija Ruuhola, Ari Nikula, Nivala Vesa, Seppo Nevalainen, Juho Matala. (2016). Effects of bedrock and surficial deposit composition on moose damage in young forest stands in Finnish Lapland. Silva Fennica vol. 50 no. 3 article id 1565. https://doi.org/10.14214/sf.1565
Keywords: Pinus sylvestris; plantation; Alces alces; soil; damage risk; topography; geochemistry
Highlights: The effect of bedrock and soil on moose damage in forest plantations were examined; Moose damage were concentrated in nutrient rich bedrock areas; Bedrock of damaged stands contained a higher proportion of mafic and alkaline rocks; Pine-dominated stands on fine grained fertile forest sites had the highest damage risk.
Abstract | Full text in HTML | Full text in PDF | Author Info

There is evidence that moose are attracted to fertile growth habitats apparently due to better quality and larger quantities of food. The nutrients in mineral soils originate from the weathering of bedrock and the composition of parental bedrock affects the fertility of produced mineral soil, thus affecting also the import of nutrients into the whole food web. We surveyed the connection between moose damage in forest plantations and the composition of bedrock and surficial deposits in Finnish Lapland. We used a database of compensated moose damage in private forests in years 1997−2010. Undamaged stands in National Forest Inventories (NFI) from years 1986–2008 served as a control data and moose-damaged NFI-stands as a reference data. Bedrock and surficial depositions and the location of studied stands in relation to ancient shorelines were explored by using the digital databases of the Geological Survey of Finland. Moose-damaged stands were concentrated in southwestern and east Lapland in the areas of the Peräpohja Schist Belt and Lapland’s Greenstone Belt that are both composed of nutrient-rich rocks. The bedrock of damaged stands contained a higher proportion of mafic and alkaline rocks than did the control stands. Moose-damaged stands were pine-dominated and grew in more fertile forest sites than did control stands. Part of pine stands probably located in soils formerly occupied by spruce, which may increase the stands’ vulnerability to biotic threats. Especially, there were relatively more moose damage in pine plantations regenerated on fine-grained mineral soils derived from nutrient rich rocks than in less fertile soils.

  • Ruuhola, Natural Resources Institute Finland (Luke), Natural Resources and Bioproduction, Yliopistokatu 6, FI-80101 Joensuu, Finland; University of Eastern Finland, Faculty of Science and Forestry, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: teija.ruuhola@uef.fi
  • Nikula, Natural Resources Institute Finland (Luke), Economics and Society, Eteläranta 55, FI-96300 Rovaniemi, Finland E-mail: ari.nikula@luke.fi (email)
  • Vesa, Natural Resources Institute Finland (Luke), Economics and Society, Eteläranta 55, FI-96300 Rovaniemi, Finland E-mail: vesa.nivala@luke.fi
  • Nevalainen, Natural Resources Institute Finland (Luke), Natural Resources and Bioproduction, Yliopistokatu 6, FI-80101 Joensuu, Finland E-mail: seppo.nevalainen@luke.fi
  • Matala, Natural Resources Institute Finland (Luke), Natural Resources and Bioproduction, Yliopistokatu 6, FI-80101 Joensuu, Finland E-mail: juho.matala@luke.fi
article id 1560, category Research article
Marina Gurskaya, Pavel Moiseev, Martin Wilmking. (2016). Does slope exposure affect frost ring formation in Picea obovata growing at treeline in the Southern Urals? Silva Fennica vol. 50 no. 3 article id 1560. https://doi.org/10.14214/sf.1560
Keywords: tree line; topography; frost injury; Siberian spruce
Highlights: Frost ring formation was ubiquitous from continuous forest cover to treeline, but, surprisingly, was not affected by slope exposure; Late frosts in spring were the main cause for frost ring formation; While mainly young trees (< 30 years) recorded frost events, at the climatically harshest site (highest elevation, northeastern exposure), frost events were recorded also in trees older than 70 years.
Abstract | Full text in HTML | Full text in PDF | Author Info

Topographic complexity in mountainous ecosystems strongly influences plant growth and as such also wood formation. This wood formation can possibly be used to understand topographic variation of the main climatic drivers, e.g. by modulating frost events. Here we test the influence of different slope exposures on the spatio-temporal distribution of frost rings in Siberian spruce (Picea obovata Ledeb.) in the Southern Urals, Russia. We sampled on two opposite slopes, northeast (NE) and southwest (SW), on three elevation levels from the highest single trees to closed canopy forest and analysed frost ring occurrence and their seasonal timing. Frost ring formation at all exposure-elevation combinations was common and mainly concentrated in the early part of the growing season. The age until trees record frost rings was equally similar (until about 35 years) on both slopes and different elevational levels with the exception of the climatically harshest site, the highest elevation on the NE slope. While we could not deduce a direct, easily identifiable climatic driver for the formation of frost rings, our analysis shows high potential to disentangle the complex interplay between climate, site condition and tree growth in mountainous ecosystems.

  • Gurskaya, Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences , 8 Marta St. 202, 620144 Ekaterinburg, Russia E-mail: mgurskaya@yandex.ru (email)
  • Moiseev, Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences , 8 Marta St. 202, 620144 Ekaterinburg, Russia E-mail: moiseev@ipae.uran.ru
  • Wilmking, Institute of Botany and Landscape Ecology, Soldmanstrasse 15, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany E-mail: wilmking@uni-greifswald.de
article id 538, category Research article
Seppo Nevalainen. (2002). The incidence of Gremmeniella abietina in relation to topography in southern Finland. Silva Fennica vol. 36 no. 2 article id 538. https://doi.org/10.14214/sf.538
Keywords: Pinus sylvestris; forest inventory; Gremmeniella abietina; topography; digital elevation models
Abstract | View details | Full text in PDF | Author Info
Field data of the 8th National Forest Inventory (NFI) from southern Finland and digital elevation models (DEMs) were used in this study. Damage due to Gremmeniella abietina increased slightly with an increase in absolute elevation in mineral soils. Severe damage increased almost linearly with an increase in elevation in mineral soil plots. The mean elevation in the tract area (the 7 km x 8 km area surrounding the plot) was more strongly correlated with the disease than the elevation of individual plots. The relative altitude of the plot was important: the disease was most severe in the plots situated lower than the mean elevation of the tract area, especially in the peatland plots. In this group, the damage increased linearly with an increase in absolute elevation. According to detailed DEMs in the most diseased areas, steepness of the slope was negatively correlated with the disease. The aspect of the slope had a weak influence. On mineral soils, the disease was most common in south-facing slopes. The microtopography was not as important for the disease occurrence as the relative elevation of the plot. The disease frequencies were very similarly related to the three most common types of surface features (channels, ridges and planar regions) within the 50-m scale. At the cell size of 100 metres, the disease was more common in channels than in ridges, except in mineral soil plots. Topographic variables only partly explained the regional patterns in the occurrence of this disease. The disease was frequent on upland areas, but, on the other hand, it was also common on lowland areas. The most diseased areas studied in detail differed very much from each other with respect to topography and the disease incidence.
  • Nevalainen, Finnish Forest Research Institute, Joensuu Research Centre, P.O. Box 68, FIN-80101 Joensuu, Finland E-mail: seppo.nevalainen@metla.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles