Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'tropical'

Category : Article

article id 5594, category Article
Anssi Niskanen, Tapio Rantala, Olli Saastamoinen. (1996). Economic impacts of carbon sequestration in reforestation: examples from boreal and moist tropical conditions. Silva Fennica vol. 30 no. 2–3 article id 5594. https://doi.org/10.14214/sf.a9239
Keywords: boreal forests; carbon; forestry; Finland; Philippines; profitability; tropical forests; forest plantations
Abstract | View details | Full text in PDF | Author Info

The impact of carbon sequestration on the financial profitability of four tree plantation cases in Finland and the Philippines were examined. On the basis of stem wood growth; the accumulation of carbon in forest biomass, the formation and decomposition of litter, and the carbon flow in wood-based products were assessed for each reforestation case representing boreal (Finland) and moist tropical conditions (the Philippines). Using different unit values for carbon sequestration the profitability of reforestation was estimated for a fixed 100-year period on a per hectare basis. The financial profitability of reforestation increased notably when the sequestered carbon had high positive values. For example, when the value of carbon sequestration was set to be Twenty-five United States Dollar per megagram of carbon (25 USO/Mg C), the internal rate of return (IRR) of a reforestation investment with Norway spruce (Picea abies (L.) H. Karst.) in Finland increased from 3.2% to 4.1 %. Equally, the IRR of reforestation with mahogany (Swietenia macrophylla King) in the Philippines increased from 12.8% to 15.5%. The present value of carbon sequestration ranged from 39–48% and from 77–101% of the present value of the reforestation cost in Finland and the Philippines, respectively when a 25 USO/Mg C shadow price and a 5% discount rate were applied. Sequestration of one mg of carbon in reforestation in Finland and the Philippines was estimated to cost from 10.5–20.0 and from 4.0–13.6 USO, respectively.

  • Niskanen, E-mail: an@mm.unknown (email)
  • Rantala, E-mail: tr@mm.unknown
  • Saastamoinen, E-mail: os@mm.unknown
article id 5248, category Article
Markku Simula. (1985). Forestry and development - a global viewpoint. Silva Fennica vol. 19 no. 4 article id 5248. https://doi.org/10.14214/sf.a15427
Keywords: sustainable forestry; forestry; deforestation; developing countries; forest resources; air pollution; developed countries; tropical forests
Abstract | View details | Full text in PDF | Author Info

The area of world forests is gradually declining because of various human activities, such as shifting cultivation, uncontrolled logging and industrial pollution. Continuation of the trends would have detrimental ecological, economic and social effects on global scale. The diversity of the problem is wide. The situation in the tropical developing countries differs from that in the industrialized world. With the present rates of population growth and unchanged forest policies, the fuelwood shortage in developing countries is rapidly aggravating. The need for more agricultural land tends to prejudice conscious efforts to increase wood production.

The industrialized countries are experiencing problems in introducing forest policy means to maintain sufficient timber supply. Rapidly increasing pollution problem cause a serious hazard to the existence of the whole forest ecosystem. Forestry has primarily been a national issue of relatively low priority in political decision-making, which has resulted in insufficient action to remedy the situation at national and international level.

The renewability of forest resources represents a strategic asset, the importance of which is bound to increase in the long-run potential for badly needed economic and social change in the world’s poor rural areas will be lost.

The PDF includes a summary in Finnish.

  • Simula, E-mail: ms@mm.unknown (email)

Category : Article

article id 7243, category Article
Franz Heske. (1929). Paper on knowledge on forest zones in West-Himalayan Mountains. Acta Forestalia Fennica vol. 34 no. 30 article id 7243. https://doi.org/10.14214/aff.7243
Keywords: forest zone; Himalayan; tropical; temperate; alpine
Abstract | View details | Full text in PDF | Author Info

The article presents forests on Tehri Garhwal district (former kingdom, now part of India). Most of the area is middle-mountainous area with valleys and hills. The forests in the area belong to three different forest zones: tropical, temperate and alpine. The article presents the characteristics of the forests and vegetation for every zone. 

The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander.

  • Heske, E-mail: fh@mm.unknown (email)

Category : Research article

article id 10019, category Research article
Junyan Liu, Junfeng Tang, Si-Chong Chen, Wenbao Ma, Zheng Zheng, Tingfa Dong. (2019). Do tree cavity density and characteristics vary across topographical habitats in the tropics? A case study from Xishuangbanna, southwest China. Silva Fennica vol. 53 no. 1 article id 10019. https://doi.org/10.14214/sf.10019
Keywords: heterogeneity; cavity-dependant animals; tropical rainforest; biodiversity conservation
Highlights: Cavities were significantly more abundant in high- and low-slope than high-plateau habitats; There are more “butt hollow” cavities in high-slope habitat and they occurred at a lower height; More “crack” cavities in low-slope habitat and they had a narrower entrance diameter; Certain types of cavities are concentrated in specific habitats, which provide opportunities for forest management and biodiversity conservation.
Abstract | Full text in HTML | Full text in PDF | Author Info

Despite the influence of cavities on the survival and distribution of cavity-dependent fauna, the variation in the density and characteristics of tree cavities across different habitat types in tropical forests is unknown. In this study, we surveyed 26 312 living trees from 376 species and compared cavity density and characteristics (height, size, type, and orientation) across five habitat types (valley, low-slope, high-slope, high-gully, and high-plateau) in a 20-hectare tropical rainforest in southwest China. From a total of 2047 cavities, we found that cavity density was mainly driven by habitat rather than tree species richness or diameter at breast height (DBH), and the characteristics of cavities were not uniformly distributed across habitats. Cavities were significantly more abundant in high- and low-slope than high-plateau habitats. Compared with other habitats, more “butt hollow” cavity types were found in high-slope habitat and they occurred at a lower tree height, whereas more “crack” cavities were found in low-slope habitat and they had a narrower entrance diameter. Although the mean orientation of cavities faced towards the northeast, cavity orientation varied significantly across habitat types. Our results indicate that certain types of cavities are concentrated in specific habitat types, which can provide avenues for forest management and biodiversity conservation. We highlight the importance of habitat heterogeneity in providing resources for cavity nesters.

  • Liu, Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province) and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China E-mail: liujunyan2300@163.com
  • Tang, Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province) and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China E-mail: jft@nn.ch
  • Chen, Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex RH17 6TN, UK; Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Beer-Sheva 8499000, Israel E-mail: chensichong0528@gmail.com
  • Ma, Ecological Restoration and Conservation of Forests and Wetlands Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu 610081, China E-mail: mawenbao_2000@126.com
  • Zheng, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China E-mail: dioeco@outlook.com
  • Dong, Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province) and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China E-mail: dongtf@aliyun.com (email)

Category : Research note

article id 10012, category Research note
Irving U. Hernández-Gómez, Carlos R. Cerdán, Angélica Navarro-Martínez, Dinora Vázquez-Luna, Samaria Armenta-Montero, Edward A. Ellis. (2019). Assessment of the CLASlite forest monitoring system in detecting disturbance from selective logging in the Selva Maya, Mexico. Silva Fennica vol. 53 no. 1 article id 10012. https://doi.org/10.14214/sf.10012
Keywords: community forestry; forest degradation; tropical forest; Yucatan Peninsula
Highlights: The accuracy of CLASlite to detect forest disturbance from selective logging using Landsat imagery was very low (<19.1%); Selective logging impacts was only detected in one case with the highest logging intensity (7 m3 ha–1); CLASlite shows potential in monitoring forest disturbance from tree biomass impacts greater than 900 m2.
Abstract | Full text in HTML | Full text in PDF | Author Info

Detecting and monitoring forest disturbance from selective logging is necessary to develop effective strategies and polices that conserve tropical forests and mitigate climate change. We assessed the potential of using the remote sensing tool, CLASlite forest monitoring system, to detect disturbance from timber harvesting in four community forests (ejidos) of the Selva Maya on the Yucatan Peninsula, Mexico. Selective logging impacts (e.g. felling gaps, skid trails, logging roads and log landings) were mapped using GPS in the 2014 annual cutting areas (ACAs) of each ejido. We processed and analyzed two pre-harvest Landsat images (2001 and 2013) and one post-harvest image (November 2014) with the CLASlite system, producing maps of degraded, deforested and unlogged areas in each ACA. Based on reference points of disturbed (felling and skidding), deforested (log landings and roads) and unlogged areas in each ACA, we applied accuracy assessments which showed very low overall accuracies (<19.1%). Selective logging impacts, mainly from log landings and new logging road construction, were detected in only one ejido which had the highest logging intensity (7 m3 ha–1).

  • Hernández-Gómez, Facultad de Ciencias Agrícolas, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán, Isleta, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: urielxal@gmail.com
  • Cerdán, Facultad de Ciencias Agrícolas, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán, Isleta, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: ccerdan@uv.mx
  • Navarro-Martínez, El Colegio de la Frontera Sur Av. Centenario km 5.5, Col. Pacto Obrero Campesino s/n. Chetumal, Quintana Roo. C.P. 77014, Mexico E-mail: manavaster@gmail.com
  • Vázquez-Luna, Facultad de Ingeniería en Sistemas de Producción Agropecuaria, Universidad Veracruzana. Carretera Costera del Golfo Km. 220, C. Agrícola y Ganadera Michapan, Acayucan, Veracruz. C.P. 96000, Mexico E-mail: divazquez@uv.mx
  • Armenta-Montero, Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana. Morelos No. 44 y 46, Zona Centro, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: samaria.am@gmail.com
  • Ellis, Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana. Morelos No. 44 y 46, Zona Centro, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: eellis@uv.mx (email)
article id 1275, category Research note
Arshad Ali, Ming-Shan Xu, Yan-Tao Zhao, Qing-Qing Zhang, Liu-Li Zhou, Xiao-Dong Yang, En-Rong Yan. (2015). Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fennica vol. 49 no. 4 article id 1275. https://doi.org/10.14214/sf.1275
Keywords: aboveground biomass; allometric equations; carbon storage; biometric variables; shrubs; subtropical forests
Highlights: Diameter (D) and height (H) are strong predictors in species-specific and multispecies models for the aboveground biomass of subtropical shrubs and small trees; Although wet basic density and crown shape may improve the predictive power of aboveground biomass slightly, the labor intensive measurements for wet basic density and crown shape may be disregarded when a large number of individuals are to be surveyed; Our results extend the generality of D-H models for aboveground biomass for large trees to subtropical shrubs and small trees.
Abstract | Full text in HTML | Full text in PDF | Author Info

Species-specific allometric equations for shrubs and small trees are relatively scarce, thus limiting the precise quantification of aboveground biomass (AGB) in both shrubby vegetation and forests. Fourteen shrub and small tree species in Eastern China were selected to develop species-specific and multispecies allometric biomass equations. Biometric variables, including the diameter of the longest stem (D), height (H), wet basic density (BD), and crown area and shape were measured for each individual plant. We measured the AGB through a non-destructive method, and validated these measurements using the dry mass of the sampled plant components. The AGB was related to biometric variables using regression analysis. The species-specific allometric models, with D and H as predictors (D-H models) accounted for 70% to 99% of the variation in the AGB of shrubs and small trees. A multispecies allometric D-H model accounted for 71% of the variation in the AGB. Although BD, as an additional predictor, improved the fit of most models, the D-H models were adequate for predicting the AGB for shrubs and small trees in subtropical China without BD data.

  • Ali, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China; Department of Environmental Sciences, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan E-mail: arshadforester@gmail.com
  • Xu, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China E-mail: yumsh09@lzu.edu.cn
  • Zhao, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China E-mail: zhaoyantao1991@163.com
  • Zhang, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China E-mail: qingzq@yeah.net
  • Zhou, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China E-mail: 792920738@qq.com
  • Yang, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China E-mail: xjyangxd@sina.com
  • Yan, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China E-mail: eryan@des.ecnu.edu.cn (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles