Category :
Research article
article id 23045,
category
Research article
Laura Pikkarainen,
Harri Strandman,
Eerik Vento,
Aaron Petty,
Olli-Pekka Tikkanen,
Antti Kilpeläinen,
Heli Peltola.
(2024).
Effects of forest conservation and management on timber, ecosystem carbon, dead wood and habitat suitability area in a boreal forest under climate change.
Silva Fennica
vol.
58
no.
2
article id 23045.
https://doi.org/10.14214/sf.23045
Highlights:
Increasing forest conservation areas increased all other ecosystem services except timber yield. Intensive forest management enhanced this increase; Increased conservation area decreased timber yield, but intensive forest management reduced this effect and even overcompensated it at the end of simulation period in the 10% conservation scenario with intensified forest management; Climate change increased all other ecosystem services, except carbon stocks.
Abstract |
Full text in HTML
|
Full text in PDF |
Author Info
We used forest ecosystem model simulations to study how forest conservation and management intensity affected timber yield, ecosystem carbon stocks, amount of dead wood, and habitat suitability area in a middle boreal forest region of Finland under changing climate over a 90-year simulation period. We used the following forest conservation and management scenarios: baseline forest management (BM), BM with 10 or 20% increase of conservation area with or without intensified forest management (i.e. improved forest regeneration material and forest fertilization). The simulations were done under current climate (reference period of 1981–2010), and Representative Concentration Pathway (RCP) climate change projections under the RCP2.6 and RCP4.5 forcing scenarios. Overall, increasing the forest conservation area decreased timber yield and increased the ecosystem carbon stock, the amount of dead wood and consequently the area of suitable habitat for saproxylic species. The use of intensified forest management reduced the loss of timber yield, increased ecosystem carbon stock, the amount of dead wood and area of suitable habitat for saproxylic species. At the end of simulation period, the use of intensified forest management even overcompensated (4–6% higher) the timber loss from 10% increase of conservation area. Under changing climate, timber yield, the amount of dead wood and the area of suitable habitats for saproxylic species increased. To conclude, with intensified forest management it is possible, in the short term, to decrease the loss of timber yield through increased forest conservation area and in the long term maintain or even increase it compared to baseline forest management.
-
Pikkarainen,
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80100 Joensuu, Finland
https://orcid.org/0000-0001-5301-3639
E-mail:
laura.pikkarainen@uef.fi
-
Strandman,
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80100 Joensuu, Finland
https://orcid.org/0000-0002-9400-6424
E-mail:
harri.strandman@uef.fi
-
Vento,
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80100 Joensuu, Finland
E-mail:
eerik.vento@gmail.com
-
Petty,
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80100 Joensuu, Finland
https://orcid.org/0009-0006-6595-1386
E-mail:
aaron.petty@uef.fi
-
Tikkanen,
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80100 Joensuu, Finland
https://orcid.org/0000-0002-3875-2772
E-mail:
olli-pekka.tikkanen@uef.fi
-
Kilpeläinen,
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80100 Joensuu, Finland
https://orcid.org/0000-0003-4299-0578
E-mail:
antti.kilpelainen@uef.fi
-
Peltola,
School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80100 Joensuu, Finland
E-mail:
heli.peltola@uef.fi
article id 10215,
category
Research article
Korotimi Ouédraogo,
Kangbéni Dimobe,
Adjima Thiombiano.
(2020).
Allometric models for estimating aboveground biomass and carbon stock for Diospyros mespiliformis in West Africa.
Silva Fennica
vol.
54
no.
1
article id 10215.
https://doi.org/10.14214/sf.10215
Highlights:
Biomass estimation models developed for Diospyros mespiliformis; Models based on DBH alone predicted aboveground biomass with 97.11% accuracy; Published models had relative error between –72% and +98%; Models for branch and stem biomass were more accurate than those for leaf biomass.
Abstract |
Full text in HTML
|
Full text in PDF |
Author Info
Accurate estimates of aboveground biomass (AGB) strongly depend on the suitability and precision of allometric models. Diospyros mespiliformis Hochst. ex A. DC. is a key component of most sub-Sahara agroforestry systems and, one of the most economically important trees in Africa. Despite its importance, very few scientific information exists regarding its biomass and carbon storage potential. In this study direct method was used to develop site-specific biomass models for D. mespiliformis tree components in Burkina Faso. Allometric models were developed for stem, branch and leaf biomass using data from 39 tree harvested in Sudanian savannas of Burkina Faso. Diameter at breast height (DBH), tree height, crown diameter (CD) and basal diameter (D20) were regressed on biomass component using non-linear models with DBH alone, and DBH in combination with height and/or CD as predictor variables. Carbon content was estimated for each tree component using the ash method. Allometric models differed between the experimental sites, except for branch biomass models. Site-specific models developed in this study exhibited good model fit and performance, with explained variance of 81–98%. Using models developed from other areas would have underestimated or overestimated biomass by between –72% and +98%. Carbon content in aboveground components of D. mespiliformis in Tiogo, Boulon and Tapoa-Boopo was 55.40% ± 1.50, 55.52% ± 1.06 and 55.63% ± 1.00, respectively, and did not vary significantly (P-value = 0.909). Site-specific models developed in this study are useful tool for estimating carbon stocks and can be used to accurately estimate tree components biomass in vegetation growing under similar conditions.
-
Ouédraogo,
University Joseph Ki-Zerbo, UFR/SVT, Laboratory of Plant Biology and Ecology, 03 B.P. 7021 Ouagadougou 03, Burkina Faso
E-mail:
okorotimi@yahoo.fr
-
Dimobe,
University Joseph Ki-Zerbo, UFR/SVT, Laboratory of Plant Biology and Ecology, 03 B.P. 7021 Ouagadougou 03, Burkina Faso; University of Dédougou, Institut des Sciences de l’Environnement et du Développement Rural (ISEDR), BP 139 Dédougou, Burkina Faso; West African Science Service Center on Climate Change and Adapted Land Use, Competence Center, Avenue Muamar Ghadhafi, Ouagadougou, BP 9507, Burkina Faso
https://orcid.org/0000-0001-5536-9700
E-mail:
kangbenidimobe@gmail.com
-
Thiombiano,
University Joseph Ki-Zerbo, UFR/SVT, Laboratory of Plant Biology and Ecology, 03 B.P. 7021 Ouagadougou 03, Burkina Faso
E-mail:
adjima_thiombiano@yahoo.fr
article id 696,
category
Research article
Jukka Lippu.
(1998).
Redistribution of 14C-labelled reserve carbon in Pinus sylvestris seedlings during shoot elongation.
Silva Fennica
vol.
32
no.
1
article id 696.
https://doi.org/10.14214/sf.696
Abstract |
View details
|
Full text in PDF |
Author Info
This study examined the later use of 14C reserves formed in previous autumn in Scots pine (Pinus sylvestris L.) seedlings. The seedlings were allowed to photosynthesise 14CO2 in early September when shoot and needle growth was over. The following spring the seedlings were harvested in five samplings during the shoot growth period. The distribution and concentration of 14C were determined and the results were compared with the growth data. It was observed that reserves were not used markedly for the new growth. Most of the 14C was found in one-year-old needles (30–40%) and in the root system (40–50%) which was due to both their high activity as a storage sink and their large sink size. The high initial 14C-activity in the finest roots decreased indicating respiration of reserves. Only a small percent of the reserve carbon was found in the new shoots which indicated that reserves are of minor importance in building a new shoot. An allocation of about 15% of the autumn storage to the stem suggested that in seedlings the stem is of minor importance as a storage organ.
-
Lippu,
Department of Forest Ecology, P.O. Box 24 (Unioninkatu 40 B), FIN-00014 University of Helsinki, Finland
E-mail:
jukka.lippu@helsinki.fi
Category :
Research note
article id 1275,
category
Research note
Highlights:
Diameter (D) and height (H) are strong predictors in species-specific and multispecies models for the aboveground biomass of subtropical shrubs and small trees; Although wet basic density and crown shape may improve the predictive power of aboveground biomass slightly, the labor intensive measurements for wet basic density and crown shape may be disregarded when a large number of individuals are to be surveyed; Our results extend the generality of D-H models for aboveground biomass for large trees to subtropical shrubs and small trees.
Abstract |
Full text in HTML
|
Full text in PDF |
Author Info
Species-specific allometric equations for shrubs and small trees are relatively scarce, thus limiting the precise quantification of aboveground biomass (AGB) in both shrubby vegetation and forests. Fourteen shrub and small tree species in Eastern China were selected to develop species-specific and multispecies allometric biomass equations. Biometric variables, including the diameter of the longest stem (D), height (H), wet basic density (BD), and crown area and shape were measured for each individual plant. We measured the AGB through a non-destructive method, and validated these measurements using the dry mass of the sampled plant components. The AGB was related to biometric variables using regression analysis. The species-specific allometric models, with D and H as predictors (D-H models) accounted for 70% to 99% of the variation in the AGB of shrubs and small trees. A multispecies allometric D-H model accounted for 71% of the variation in the AGB. Although BD, as an additional predictor, improved the fit of most models, the D-H models were adequate for predicting the AGB for shrubs and small trees in subtropical China without BD data.
-
Ali,
School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China; Department of Environmental Sciences, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
E-mail:
arshadforester@gmail.com
-
Xu,
School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China
E-mail:
yumsh09@lzu.edu.cn
-
Zhao,
School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China
E-mail:
zhaoyantao1991@163.com
-
Zhang,
School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China
E-mail:
qingzq@yeah.net
-
Zhou,
School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China
E-mail:
792920738@qq.com
-
Yang,
School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China
E-mail:
xjyangxd@sina.com
-
Yan,
School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Tiantong National Forest Ecosystem Observations and Research Station, Ningbo 315114, Zhejiang, China
E-mail:
eryan@des.ecnu.edu.cn