Current issue: 58(4)
Strong wind is the major natural disturbance in European forests, that periodically causes tremendous damages to forestry. Yet, factors that affect the probability of wind damage for birch (Betula pendula Roth and B. pubescens Ehrh.), the most common deciduous tree species in hemiboreal forests, are studied scarcely. This study aimed to assess the effects of several tree- and stand-scale variables on the probability of wind damage to birch using data from the Latvian National Forest Inventory (2004–2018), and determine individual tree characteristics that affect the height of the stem breakage. The data analysis was done using the Bayesian binary logistic generalized linear mixed-effects model and a linear mixed-effects model. The probability of wind damage significantly increased by stand age, basal area, and slenderness ratio. Trees with prior damage had a significantly higher probability (odds ratio 4.32) for wind damage. For wind-damaged trees, the snapping height was significantly decreased by an increase in the slenderness ratio (p = 0.03) and prior damage (p = 0.003). Previously damaged trees were more frequently (73%) snapped in the lowest 40% of tree height than trees without prior damage (54%). The probability of wind damage is largely set by factors related to the selection of site, species composition, and rotation. The damage probability could be decreased by management measures that lower competition within the stand with particular regard to preserving intact remaining trees during these manipulations. Factors that reduce the probability of the damage simultaneously increase the snapping height, emphasizing their relevance for mitigation of the wind damages.
Fire is a common disturbance in boreal forests causing changes in biological diversity at various spatial scales. In the past 100 years, forest management has limited fire outbreaks, but in the future, the fire-affected forest area is expected to increase in many regions due to climate change. Burned forests are typically salvage-logged, but the effect of this type of management versus natural regeneration on biological diversity is not well understood, particularly the mid-term effect to tree establishment and understory vegetation composition and diversity. Various management methods were used after a large fire in 1992 in a peatland-forest complex and neighbouring managed forests, which created an experimental setup for study of the effect of management after fire in the Sliteres National park, northwestern Latvia. Understory vegetation was described in plots using a design of four forest and three management types: natural regeneration (unmanaged) and managed sites with salvage logging followed by no further human intervention and salvage logging with planting. Post-fire management had different effect in each forest type. Species richness was higher in forest types with salvage logging than in natural regenerated sites on rich wet and rich dry forest types, but not for the poor forest types. Tree regeneration was generally greater in salvage-logged stands, but differed between forest types. Species composition was related to tree regeneration and canopy openness. In contrast to other studies, salvage logging had a positive mid-term effect to ground vegetation diversity and tree establishment in the studied stands, implying potential for concomitant management and conservation of ground cover vegetation in semi-natural stands.
Fire as disturbance of forests has an important ecological and economical role in boreal and hemiboreal forests. The occurrence of forest fires is both climatically and anthropogenically determined and shifts in fire regimes are expected due to climate change. Although fire histories have been well documented in boreal regions, there is still insufficient information about fire occurrence in the Baltic States. In this study, spatio-temporal patterns and climatic drivers of forest fires were assessed by means of spatial and time-series analysis. The efficiency of Canadian Fire Weather (FWI) indices as indicators for fire activity was tested. The study was based on data from the literature, archives, and the Latvian State Forest service database. During the period 1922–2014, the occurrence and area affected by forest fires has decreased although the total area of forest land has nearly doubled, suggesting improvement of the fire suppression system as well as changes in socioeconomic situation. The geographical distribution of forest fires revealed two pronounced clusters near the largest cities of Riga and Daugavpils, suggesting dominance of human causes of ignitions. The occurrence of fires was mainly influenced by drought. FWI appeared to be efficient in predicting the fire occurrence: 23–34% of fires occurred on days with a high or extremely high fire danger class, which overall had a relative occurrence of only 4.3–4.6%. During the 20th century, the peak of fire activity shifted from May to April, probably due to global warming and socioeconomic reasons. The results of this study are relevant for forest hazard mitigation and development of fire activity prediction system in Latvia.
In managed European hemiboreal forests, windstorms have a notable ecological and socio-economic impact. In this study, stand properties affecting windstorm damage occurrence at the stand-level were assessed using a Generalized Linear Mixed model. After 2005 windstorm, 5959 stands dominated by birch (Betula spp.), Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.), with mean height > 10 m were inventoried. Windstorm damage was positively associated with spruce and pine-dominated stands, increasing mean height, fresh forest edges, decreasing time since the last thinning and stronger wind gusts. Tree species composition – mixed or monodominant – was not statistically significant in the model; while, the admixture of spruce in the canopy layer was positively associated with higher windstorm damage. Stands on peat soils were more damaged than stands on mineral soils. Birch stands were more damaged than pine stands. This information could be used in forest management planning, selection of silvicultural treatments to increase forest resilience to natural disturbances.
Forest fire is one of the natural disturbances, which have important ecological and socioeconomical effect. Although fire activity is driven by weather conditions, during past two centuries forest fires have been strongly anthropogenically controlled. In this study, teleconnection between sea surface temperature (SST) in the Atlantic, which influences climate in Europe, and forest fire activity in Latvia and Estonia was assessed using “Climate explorer” web-tool. Factors affecting number and area of forest fires in Latvia and Estonia differed, suggesting regional specifics. In Estonia, the number of fires correlated with the SST in the North Atlantic in spring and summer, which affects the inflow of cool and dry air masses from the Arctic, hence the aridity and burnability. The area of fires in Estonia and in Latvia was associated with increased SST in Baltic Sea and near the European coast in summer, which likely were consequences of occurrence of warm high-pressure systems in summer, causing hot and dry conditions. Nevertheless, the observed teleconnections could be used to predict activity of forest fires in Latvia and Estonia.