Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Ane Zubizarreta Gerendiain

Category : Research article

article id 194, category Research article
Ane Zubizarreta Gerendiain, Heli Peltola, Pertti Pulkkinen. (2009). Growth and wood property traits in narrow crowned Norway spruce (Picea abies f. pendula) clones grown in southern Finland. Silva Fennica vol. 43 no. 3 article id 194. https://doi.org/10.14214/sf.194
Keywords: fibre length; stem volume; height; diameter; wood density; earlywood; latewood
Abstract | View details | Full text in PDF | Author Info
We investigated the growth, yield, wood density traits and fibre properties in 13 narrow crowned Norway spruce (Picea abies f. pendula) clones grown at a spacing of 2 m x 1.5 m (about 3300 seedlings/ha) in a field trial established in 1988 in southern Finland on a forest soil. For comparison, we used 3 normal crowned Norway spruce (Picea abies (L.) Karst.) genetic entries grown as a mixture in the same trial representing southern Finnish breeding regions. We found that wood density traits and fibre properties showed, on average, lower phenotypic variation than growth and yield traits regardless of crown type. Narrow crowned clones also had, on average, lower stem volume and fibre length, but higher overall wood density. More over, the phenotypic correlations between studied growth and wood properties ranged, on average, from moderate (normal crown) to high (narrow crown). These results were opposite to previous findings for narrow and normal crowned genetic entries grown in narrower spacing (1 m x 1 m) in southern Finland. Thus, this indicates lower plasticity of narrow crowned clones to the increasing growing space compared to normal crowned ones, so, they should be grown at denser spacing in order to fully utilise its space efficiency capacity. However, this field trial was established as a mixture of normal and narrow crown trees, so that 90% of genetic entries were narrow crowned ones, and therefore the crown competition would be much higher for normal crowned trees when the whole trial would consist of that entry alone. In the latter case, we could expect significantly lower productivity of normal crowned genetic entries with this spacing.
  • Zubizarreta Gerendiain, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: ane.zubizarreta@joensuu.fi (email)
  • Peltola, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: hp@nn.fi
  • Pulkkinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, FI-12600 Läyliäinen, Finland E-mail: pp@nn.fi
article id 193, category Research article
Jaume Gort, Ane Zubizarreta Gerendiain, Heli Peltola, Pertti Pulkkinen, Johanna Routa, Raimo Jaatinen. (2009). Differences in fibre properties in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fennica vol. 43 no. 3 article id 193. https://doi.org/10.14214/sf.193
Keywords: fibre length; fibre width; genetic entry; growth; wood density; coarseness; spacing
Abstract | View details | Full text in PDF | Author Info
In forest breeding, stem volume growth and sawn timber quality indicators have been used as the most important selection traits for Scots pine, whereas less attention has been given to characteristics such as fibre properties. In the above context, we investigated the differences in fibre properties (i.e. fibre length, fibre width and coarseness) in 20 year old Scots pine (Pinus sylvestris L.) genetic entries as affected by spacing and site, but also the phenotypic correlations between fibre properties, yield and wood density. The study was based on materials harvested from 10 genetic entries grown in a spacing trial (site 1) in central Finland, with a current stand density of 2000 (spacing 1), 2000–2500 (spacing 2) and 4000 trees/ha (spacing 3). In order to study the effects of site, we harvested additional material (4 of 7 genetic entries same as on site 1) from a trial located in southern Finland with a corresponding stand density of 2000 trees/ha (site 2). On site 1, spacing 1 and 3, all average values for analysed fibre properties were similar. In spacing 2 average values were slightly higher. On site 2, the average values for different fibre properties were similar compared to the corresponding spacing 1 on site 1. Spacing affected (p < 0.05) all average fibre properties on site 1; as did also site, when comparing same genetic entries grown on both sites. Regardless of spacing and site, the phenotypic correlations between average fibre length, fibre width and coarseness showed, on average, moderate to strong correlation (p < 0.05). Fibre width showed, in general, low and positive phenotypic correlation with diameter at breast height, stem volume and wood density on site 1. However, as a whole, the ranking of genetic entries changed depending on the trait and spacing considered. Thus, no overall ranking between genetic entries was possible.
  • Gort, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jaume.gort@joensuu.fi (email)
  • Zubizarreta Gerendiain, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: azg@nn.fi
  • Peltola, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: hp@nn.fi
  • Pulkkinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Karkkilantie E-mail: pp@nn.fi
  • Routa, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jr@nn.fi
  • Jaatinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Karkkilantie E-mail: rj@nn.fi
article id 192, category Research article
Heli Peltola, Jaume Gort, Pertti Pulkkinen, Ane Zubizarreta Gerendiain, Jouni Karppinen, Veli-Pekka Ikonen. (2009). Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fennica vol. 43 no. 3 article id 192. https://doi.org/10.14214/sf.192
Keywords: genetic entry; stem volume; height; diameter; wood property traits; phenotypic correlation
Abstract | View details | Full text in PDF | Author Info
In forest breeding, stem volume has typically taken as the most important selection trait, whereas less attention has been given to wood density traits. In this work, we investigated the effects of spacing and genetic entry on the growth, yield and wood density traits in 20 year old Scots pines (Pinus sylvestris L.) based on 10 genetic entries harvested from a spacing trial (stand density range 2000–4000 trees/ha) in central Finland. In order to study also the site effects, we harvested additional material from a trial located in southern Finland (stand density of 2000 trees/ha). Compared to growth and yield properties, wood density traits showed a lower phenotypic variation. Phenotypic correlations among different traits were negative, and mostly moderate to high, suggesting that selection for one trait would simultaneously affect the others. In addition, moderate to strong phenotypic correlations were found among different wood density traits. Stem volume (V) and breast height diameter (DBH) were the largest in widest spacing, whereas in the densest one tree height (H) and latewood percentage were the highest. Genetic entry affected H and wood density traits regardless of spacing. When comparing two sites (with same stand density), genetic entry affected H, whereas site affected DBH and wood density traits. Ranking between genetic entries changed depending on the trait, spacing or site considered. Therefore, no overall ranking was possible. However, we could identify genetic entries having a high V and a relatively high wood density, showing potential for future forest regeneration material.
  • Peltola, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: heli.peltola@joensuu.fi (email)
  • Gort, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jg@nn.fi
  • Pulkkinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Karkkilantie 247, FI-12600 Läyliäinen, Finland E-mail: pp@nn.fi
  • Zubizarreta Gerendiain, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: azg@nn.fi
  • Karppinen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jk@nn.fi
  • Ikonen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: vpi@nn.fi
article id 247, category Research article
Ane Zubizarreta Gerendiain, Heli Peltola, Pertti Pulkkinen, Veli-Pekka Ikonen, Raimo Jaatinen. (2008). Differences in growth and wood properties between narrow and normal crowned types of Norway spruce grown at narrow spacing in Southern Finland. Silva Fennica vol. 42 no. 3 article id 247. https://doi.org/10.14214/sf.247
Keywords: fibre length; stem volume; height; diameter; wood density; earlywood; latewood
Abstract | View details | Full text in PDF | Author Info
In recent years there has been increased interest in the so called narrow crowned Norway spruce (Picea abies f. pendula), which is a rare mutant of Norway spruce (Picea abies (L.) Karsten), as a suitable wood raw material source for pulp and paper production. This is because it is less sensitive to competition than the normal crowned Norway spruce, and thus, could be more productive especially at dense spacing. In the above context, we investigated how the growth and yield (such as height, diameter, stem volume and ring width) in addition to wood density traits and fibre properties (such as wood density, fibre length and width, cell wall thickness and fibre coarseness) were affected in trees from 9 full-sib families representing narrow crowned Norway spruce grown at narrow spacing of 1 m 1 m in Southern Finland. For comparison, we used normal crowned Norway spruce trees from 6 breeding regions. We found that, compared to growth and yield traits, wood density traits and fibre properties showed, on average, lower phenotypic variations. In addition, these variations were smaller for narrow crowned families than for normal crowned genetic entries. Narrow crowned families also showed, on average, higher growth and yield and fibre length, but lower wood density. Moreover, the phenotypic correlations between growth, yield, wood density traits and fibre properties, ranged, on average, from moderate (narrow crowned) to high (normal crowned). As a whole, the growth and wood properties of narrow crowned families were found to be less sensitive to tree competition than the normal crowned genetic entries used as a comparison.
  • Zubizarreta Gerendiain, University of Joensuu, Faculty of Forest Sciences, Joensuu, Finland E-mail: ane.zubizarreta@joensuu.fi (email)
  • Peltola, University of Joensuu, Faculty of Forest Sciences, Joensuu, Finland E-mail: hp@nn.fi
  • Pulkkinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Läyliäinen, Finland E-mail: pp@nn.fi
  • Ikonen, University of Joensuu, Faculty of Forest Sciences, Joensuu, Finland E-mail: vpi@nn.fi
  • Jaatinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Läyliäinen, Finland E-mail: rj@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles