The author first introduced the cut-block seedling production method to Finland in 1969. The aim is to raise seedlings whose lateral roots do not become deformed as a result of a restricting container or other external pressure. The seedlings are raised in a large, fairly compact substrate block where the roots can freely develop in a normal fashion. The blocks are then cut up into individual cubes, each containing a seedling. The precise positioning of the sowing point permits mechanization of the work.
The PDF includes an abstract in English.
Curly birch, a curly grained variety of birch (Betula pendula f. carelica Sok.), has fetched a higher price than any other Finnish tree species on account of its rarity and decorativeness. Curly graininess has been found in Finland in addition to silver birch, also in Alnus glutinosa and Sorbus aucuparia.
The Curly Birch Society was founded in Finland in 1956. Its purpose is to promote the cultivation and use of curly birch, and to coordinate the activities of curly birch cultivators, forest industry and research. The society has made excursions and held informative meetings every year. Furthermore, the society has arranged exhibitions and participated in more extensive agricultural and forestry fairs.
The PDF includes a summary in English.
Seed storing experiments with cones of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) were conducted in Oitti seed extracting plant in Southern Finland from February to December 1955. The pine cones were stores for 267 and the spruce coned for 304 days. In four of the storage methods the cones were packed in sacks and another four in wooden boxes. Sample of cones were taken once a month, seeds were extracted and the germinative capacity was tested. The remaining extracted seeds were placed in storage, and in January 1956 moved to cold seed cellar until 1962, when the viability of the seeds was tested.
According to the results, cleaned pine cones can be stores for at least nine months using almost all methods of storage which are commonly used at our seed traction plants, without hazarding the usability of the seeds. The seeds in spruce cones, however, seemed to be more sensitive to conditions during the storage. The germinative capacity of the spruce seeds began to decrease after the beginning of May. Later the seeds were infected with mould, which increased towards the end of the experiment.
Thus, preservation of the germinative capacity of the seeds of pine and spruce requires storage in different conditions. The results suggest that extraction of spruce seeds should be finished during the cold winter months. It seems that seed in the cones of pine and spruce endure storage in piles of paper or cloth sacks at least as well as in wooden boxes. Occasional warming of the storage, snow and foreign material among the cones and an over meter thick cone layer decreased the germinative capacity of spruce seeds during spring and summer. Spruce seeds that had been extracted immediately after collecting of the cones preserved their germinative capacity well during an eight years storage period.
The PDF includes a summary in English.