In Finland roundwood is floated either privately or co-operatively. In the later, a co-operative floating association is established to operate floating. The association is compulsory association of those enterprises who want to have wood floated along the floating routes of the area. It is favoured when the number of enterprises and the wood to be floated is large. In addition, costs are lower than in private floating.
Floating in Lake Saimaa area in Central Finland can be divided into Iso-Saimaa, where floating is private, and into Saimaa Water System, where floating is operated by a co-operative floating association. It has been suggested that adoption of co-operative floating in Iso-Saimaa would be to the common interest. This study aimed at finding out if co-operative floating influences the transport costs, and if co-operative floating increases competition of roundwood by forest industry companies.
According to the study, the costs of most enterprises would decrease. The total decrease in costs would amount to 65 million Finnish marks annually, about 20% less than the present costs. The change of organization would not alter the competitive relationship in buying roundwood. On the other hand, it would seem that co-operative floating would be less flexible than private floating. The management of a large organization, whose effective operation time would cover only a part of the year, would meet with some difficulties. Also, co-operative floating would reduce competition among enterprises.
The PDF includes a summary in English.
This paper aims at investigating which factors, in the point of view of the entrepreneur, define the choice of long-distance transport either as floating in bundles, steamship transport or barge transport in the waterway system of Lake Saimaa in 1950s. It defines the usage, kind of fleet, operation and costs of the abovesaid modes of transport. The investigation is mainly based on statistics of Enso-Gutzeit Oyj and the fuel office of the Finnish State Railways.
Location of the industrial enterprise sets the limits for use of the different modes of transport of roundwood. Previous decisions can influence the future choices, for instance, the capital the company has earler invested on the transportation system. Also, the type and amount of timber acquired by the company, transportation distance, time, and means of transport affect the choice of mode of transport. Those factors that direct decision-making, often lead the entrepreneur to stick to the chosen mode of transport.
Floating becomes the more inexpensive the larger the scale of operation is, and if the timber assortment is suitable for floating and water storage. For instance, dry wood is an asset for a wood export agency, and their sales have often time pressures, which rules floating out of their choices. Transportation in vessels has decreased to 4% of all roundwood haulage, but has its function as a supplementary way of transport.
The PDF includes a summary in German.
About 17.5% of forest lands of Finland is situated around the river and lake system of Lake Saimaa. Furthermore, the growth of the forests of the area correspond about 25% of the total growth of forests in Finland. The watersystem is one of the most important portages of roundwood in the country. It consists 11,000 km of floating channels, 2,000 km of which suit for floating in bundles. Annually 30-35 million cu ft of saw logs, 7 million cu ft of veneer timber and 2,5-3 million cu ft of pulp wood is floated in the area.
Even if the water system at present still suits well for floating, there are many opportunities for development, which would improve its competitiveness against other modes of transport. Several different sites where building of floating channels or improving the floatways are needed are described in the article.
The PDF includes a summary in German.
The length of drivable water courses in Finland was about 43,800 km in 1936, while the length of the water courses used by the floating associations was 12,467 km. The aim of the survey was to study the volume of timber in private (or separate) floating and co-operative floating operated by the floating associations in Lake Saimaa water system, and how floating was administrated in the area.
According to the study, the floating channels of the area are in good condition. Floating of timber in rafts is common in Lake Saimaa water system. The proportion of co-operative floating is smaller than in the other major water systems in Finland, and the administration of floating is, therefore, unusual. The reason for this is the nature of the water system, the wood procurement policy of the industry, the disinterest of the private forest owners towards organized floating, and the way the authorities apply the Water Rights Act. The present system is beneficial to the forest companies that float big quantities of timber, but increase of co-operative floating would avail the small and medium industry and floaters, wood selling forest owners and the workforce.
The PDF includes a summary in German.
The applicability of operations research, database management systems and geographic information systems for decision-making in long-distance transport of wood in the Saimaa area in Central Finland were reviewed. Due to the complexity of the transport problem a geographic information system is the most applicable. However, investment in such a system for only long-distance transport decision-making is unjustified. A spatial database – heuristic programming system was developed. It was applied to studying the competitiveness and search for possible areas for rationalization of water transport in particular and long-distance transport in general. The system proved to be a useful aid in long-distance transport research. Also, with the increased use of computers for planning at the field level, a system similar to that described could be a powerful managerial aid.
The PDF includes a summary in Finnish.
The transport unit in roundwood towing on Lake Iso-Saimaa in Central Finland comprises a tug and a raft of bundled wood with a towline between them. There are several factors influencing the economic size of the transport unit in roundwood towing. These are changing with the enterprises and along with general developments. In this paper these factors or factor groups are seen from the point of view of the enterprise. The main question is to determine the most economic combination of tug and raft size.
From the point of view of the towing enterprises the unit costs of transport are the most decisive factor. Both the size of the raft as well as the power of the tug influence strongly the unit costs. As a long-term goal a raft of about 35,000 m3 and a tug of 550 kW or more is considered to be advisable. The width of channels and sounds then allow a free passage for rafts being 36–40 m wide.
The PDF includes a summary in Finnish and in French.