Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'balsam'

Category : Article

article id 5595, category Article
R.A. Fleming. (1996). A mechanistic perspective of possible influences of climate change on defoliating insects in North America's boreal forests. Silva Fennica vol. 30 no. 2–3 article id 5595. https://doi.org/10.14214/sf.a9240
Keywords: climate change; disturbance regimes; boreal forest dynamics; Abies balsamea; natural selection; North America; Choristoneura fumiferana; insect outbreaks; phenological relationships; plant quality; extreme weather; thresholds
Abstract | View details | Full text in PDF | Author Info

There is no doubt that tree survival, growth, and reproduction in North America's boreal forests would be directly influenced by the projected changes in climate if they occur. The indirect effects of climate change may be of even greater importance, however, because of their potential for altering the intensity, frequency, and perhaps even the very nature of the disturbance regimes which drive boreal forest dynamics. Insect defoliator populations are one of the dominating disturbance factors in North America's boreal forests and during outbreaks trees are often killed over vast forest areas. If the predicted shifts in climate occur, the damage patterns caused by insects may be considerably changed, particularly those of insects whose temporal and spatial distributions are singularly dependent on climatic factors. The ensuing uncertainties directly affect depletion forecasts, pest hazard rating procedures, and long-term planning for pest control requirements. Because the potential for wildfire often increases in stands after insect attack, uncertainties in future insect damage patterns also lead to uncertainties in fire regimes. In addition, because the rates of processes key to biogeochemical and nutrient recycling are influenced by insect damage, potential changes in damage patterns can indirectly affect ecosystem resilience and the sustainability of the multiple uses of the forest resource.

In this paper, a mechanistic perspective is developed based on available information describing how defoliating forest insects might respond to climate warming. Because of its prevalence and long history of study, the spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is used for illustrative purposes in developing this perspective. The scenarios that follow outline the potential importance of threshold behaviour, historical conditions, phenological relationships, infrequent but extreme weather, complex feedbacks, and natural selection. The urgency of such considerations is emphasized by reference to research suggesting that climate warming may already be influencing some insect lifecycles.

  • Fleming, E-mail: rf@mm.unknown (email)

Category : Article

article id 7529, category Article
Lauri Ilvessalo. (1913). Experiments with foreign tree species in state forest Vesijako, Finland. Acta Forestalia Fennica vol. 2 no. 2 article id 7529. https://doi.org/10.14214/aff.7529
Keywords: larch; Abies balsamea; Picea glauca; Pinus mugo; white spruce; balsam fir; Abies alba; Abies pectinata; Picea alba; Pinus strobus; Pinus montana; Pinus mugho; Siberian stone pine; Siberian fir; Abies sibirica o. pichta; white fir; Weymouth pine; European
Abstract | View details | Full text in PDF | Author Info

The study area is state owned forest of Vesijako in southern middle Finland that has earlier been intensively managed with slash-and-burn agriculture and then partly reforested with foreign coniferous tree species after controlled burnings. The total area planted with foreign species consists of 66 sample areas, altogether 28 hectares. The data has been collected in summer 1909. 

The most of studied sample areas have been unsuccessful, but there are still many areas that are too young to be assessed. The originally with foreign species reforested areas are now pine stands. The tree species in experiments have been e.g. larch (Larix sibirica and L. europaea), Siberian stone pine (Pinus cembra sibirica), Siberian fir (Abies sibirica o. pichta), balsam fir (Abies balsamea), white fir (Abies pectinate also Abies alba), white spruce (Picea alba also Picea glauca), Weymouth pinen (Pinus strobus) and European / Swiss mountain pine (Pinus montana  also P. mugo, P. mugho).

The most important result of the experiments with controlled burning is that stand of grey alder (Alnus incana) with only low economic value can be effectively altered into coniferous forests (Pinus silvestris).
  • Ilvessalo, E-mail: li@mm.unknown (email)

Category : Research article

article id 10209, category Research article
Claudie-Maude Canuel, Nelson Thiffault, Michael K. Hoepting, James C.G. Farrell. (2019). Legacy effects of precommercial thinning on the natural regeneration of next rotation balsam fir stands in eastern Canada. Silva Fennica vol. 53 no. 4 article id 10209. https://doi.org/10.14214/sf.10209
Keywords: silviculture; Abies balsamea; PCT; conifer; density management
Highlights: We investigated the potential legacy effects of precommercial thinning in next rotation, dense natural balsam fir stands; Precommercial thinning had few legacy effects on next rotation stands and should not impair their regeneration; Balsam fir dominated the regeneration layer. Other tree species were almost absent.
Abstract | Full text in HTML | Full text in PDF | Author Info

The Green River precommercial thinning (PCT) trial was established between 1959–1961 in New Brunswick (Canada) within natural balsam fir (Abies balsamea (L.) Mill.)-dominated stands. Three silviculture scenarios differing only by the increasing nominal spacings of PCT treatments (1.2 m, 1.8 m, 2.4 m) were compared to an unthinned control within randomized replicates that were clearcut harvested in 2008 and treated with herbicide in 2011. During the fourth post-harvest growing season, we assessed regeneration, competing vegetation and coarse woody debris (CWD; differentiated between large woody debris and slash) to assess the legacy effects of PCT on regeneration of next rotation stands. Our results confirmed that silviculture scenarios including PCT significantly increased conifer stocking in treated plots compared to control conditions, but only in the 1.8 m nominal spacing. Considering that treated and untreated stands were fully stocked, we conclude that PCT using the spacing gradient tested has no legacy effect on the regeneration of next rotation natural balsam fir stands. Given the known sensitivity of balsam fir to future climate conditions in this region, we suggest that future treatments should promote tree species diversity to support ecosystem resilience to climate change by favouring more warm-adapted species, such as some hardwoods.

  • Canuel, Faculté de foresterie, géographie et géomatique, Université Laval, Québec, QC G1V 0A6, Canada;  Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada E-mail: claudie-maude.canuel.1@ulaval.ca
  • Thiffault, Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada ORCID http://orcid.org/0000-0003-2017-6890 E-mail: nelson.thiffault@canada.ca (email)
  • Hoepting, Canadian Wood Fibre Centre, Natural Resources Canada, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada E-mail: michael.hoepting@canada.ca
  • Farrell, Canadian Wood Fibre Centre, Natural Resources Canada, 1350 Regent Street, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada E-mail: jamescg.farrell@canada.ca
article id 1267, category Research article
Caroline Mary Adrianne Franklin, Karen A Harper, Liam Kyte Murphy. (2015). Structural dynamics at boreal forest edges created by a spruce budworm outbreak. Silva Fennica vol. 49 no. 3 article id 1267. https://doi.org/10.14214/sf.1267
Keywords: edge influence; balsam fir; insect disturbance; structure; forest influence
Highlights: Insect outbreak edges were 10 m wide with different canopy cover, stem density and tree structural diversity than adjacent ecosystems; Although edge influence on forest structure was weak, forest influence was stronger and extended further, creating an edge zone skewed towards the disturbed area; After thirty years, high-contrast and structurally-diverse transition zones persist on the landscape.
Abstract | Full text in HTML | Full text in PDF | Author Info
Natural disturbances such as insect outbreaks create boundaries that influence vegetation patterns and ecological processes.  To better understand the effects of natural edge creation on relatively intact forests and adjacent disturbed areas, we investigated forest structure on both sides of 30 year-old forest edges created by a spruce budworm (Choristoneura fumiferana Clemens) outbreak in the boreal forest of Cape Breton Highlands National Park, Canada.  Our objectives were: 1) to determine edge influence (compared to interior forest) and forest influence (compared to disturbed areas) on vegetation structure, and 2) to gain insight into the structural development of the edges.  Canopy cover, tree density, radial growth and deadwood were sampled in 5 m x 20 m plots along 120 m transects across six edges.  Randomization tests were used to estimate the magnitude and distance of edge and forest influence.  Narrow transition zones approximately 10 m wide characterized the spruce budworm-induced edges.  Edge influence did not extend into the forest; however, forest influence on structure was detected up to 40 m from the edge into the disturbed area.  We found evidence of the insect outbreak in the form of reduced radial growth during the disturbance across the entire disturbed area-forest gradient, which indicates that spruce budworm activity may not have ceased directly at the edge.  Tree mortality caused by the insect outbreak resulted in snags, many of which have transformed into logs since the outbreak collapsed.  Spruce budworm outbreak-induced forest edges are narrow but dynamic boundaries separating two distinct vegetation communities in the boreal landscape.
  • Franklin, Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, T6G 2H1, Canada E-mail: cfrankli@ualberta.ca (email)
  • Harper, School for Resource and Environmental Studies, Dalhousie University, Suite 5010, 6100 University Ave., Halifax, Nova Scotia, B3H 3J5, Canada E-mail: Karen.Harper@dal.ca
  • Murphy, Department of Environmental Science, Saint Mary’s University, 923 Robie St., Halifax, Nova Scotia, B3H 3C3, Canada E-mail: liamkmurphy@gmail.com
article id 196, category Research article
Aaron R. Weiskittel, Laura S. Kenefic, Robert S. Seymour, Leah M. Phillips. (2009). Long-term effects of precommercial thinning on the stem dimensions, form and branch characteristics of red spruce and balsam fir crop trees in Maine, USA. Silva Fennica vol. 43 no. 3 article id 196. https://doi.org/10.14214/sf.196
Keywords: Acadian Forest; growth and yield; Abies balsamea; Picea rubens; precommercial thinning
Abstract | View details | Full text in PDF | Author Info
The effects of precommercial thinning (PCT) on stem dimensions, form, volume, and branch attributes of red spruce [Picea rubens Sarg.] and balsam fir [Abies balsamea (L.) Mill.] crop trees were assessed 25 years after treatment in an even-aged northern conifer stand. Treatments were a uniform 2.4 x 2.4-m spacing and a control (no PCT). The PCT treatment significantly increased individual tree diameter at breast height (DBH), height growth, crown ratio, and crown width, while it reduced the tree height to DBH ratio. PCT also significantly increased stem taper and consequently, regional volume equations overpredicted observed stem volume by 2 to 15%, particularly for the spaced trees. PCT also increased the number and maximum size of branches on the lower bole. The sizes of knots on half of the sampled spruce crop trees in the spaced plots precluded them from being used as select structural lumber; there were no other effects on log grade. Our findings indicate that PCT can have a long-term influence on the structural attributes of individual trees, and that improved stem-volume prediction equations are needed in the Acadian region of North America.
  • Weiskittel, School of Forest Resources, University of Maine, Orono, ME 04469, USA E-mail: aaron.weiskittel@umit.maine.edu (email)
  • Kenefic, U.S. Forest Service, Northern Research Station, Bradley, ME 04411, USA E-mail: lsk@nn.us
  • Seymour, School of Forest Resources, University of Maine, Orono, ME 04469, USA E-mail: rss@nn.us
  • Phillips, School of Forest Resources, University of Maine, Orono, ME 04469, USA E-mail: lmp@nn.us

Category : Research note

article id 23050, category Research note
Anne Carolina, Rita K. Sari, Deded S. Nawawi, Effendi T. Bahtiar, Dai Kusumoto. (2024). Mechanical-chemical induction of balsam from Liquidambar excelsa trees. Silva Fennica vol. 58 no. 2 article id 23050. https://doi.org/10.14214/sf.23050
Keywords: Liquidambar excelsa; balsam; ethylene; methyl jasmonate; sustainable tapping
Highlights: The combination of mechanical and chemical induction on Rasamala branches offers an easy and efficient method for balsam exudation; Balsam exudation is chemically stimulated by methyl jasmonate and ethephon; Stimulant concentration increased the amount of balsam exuded in a dose-dependent manner.
Abstract | Full text in HTML | Full text in PDF | Author Info

Rasamala (Liquidambar excelsa (Noronha) Oken) is an endemic plant in Indonesia. Apart from its use as wood, Rasamala also produces an exudate, known as balsam. Rasamala balsam has the potential to be a substitute for other true balsams derived from Altingiaceae, namely Storax. However, local communities have not used Rasamala balsam to its full potential owing to a lack of knowledge about the tapping method and processing. Therefore, an easy and efficient induction method for plant exudates is required to boost productivity. The use of exogenous hormones as stimulants and less damaging tapping techniques for plant stems requires further investigation. In this study, mechanical and chemical inductions were conducted using 0.1%, 1%, 2%, 5%, and 10% (w/w) methyl jasmonate and ethephon as stimuli. These chemical compounds were applied to young twigs without incision (TW), by incision (TI), to branches perforated with an electric bore (BB), and by incision (BI). After exogenous application for 21 days, Rasamala balsam exuded in all induction techniques, except for the TW treatment. BI treatment showed the highest effective induction, as indicated by the highest balsam exudation. Furthermore, methyl jasmonate was a better chemical stimulant than ethephon. In addition, the induced balsam Rasamala exudate showed a physical characteristic of a clear, thick, sticky colorless to white liquid with a distinctive balsamic odor.

  • Carolina, Department of Forest Products, Faculty of Forestry and Environment, IPB University, Jl. Lingkar Kampus IPB Dramaga, Bogor, 16680, Indonesia ORCID https://orcid.org/0000-0002-2129-8665 E-mail: a_caroline@apps.ipb.ac.id (email)
  • Sari, Department of Forest Products, Faculty of Forestry and Environment, IPB University, Jl. Lingkar Kampus IPB Dramaga, Bogor, 16680, Indonesia ORCID https://orcid.org/0000-0001-5377-1384 E-mail: rita_kartikasari@apps.ipb.ac.id
  • Nawawi, Department of Forest Products, Faculty of Forestry and Environment, IPB University, Jl. Lingkar Kampus IPB Dramaga, Bogor, 16680, Indonesia ORCID https://orcid.org/0000-0001-8367-0349 E-mail: dnawawi@apps.ipb.ac.id
  • Bahtiar, Department of Forest Products, Faculty of Forestry and Environment, IPB University, Jl. Lingkar Kampus IPB Dramaga, Bogor, 16680, Indonesia ORCID https://orcid.org/0000-0003-0003-5855 E-mail: bahtiar_et@apps.ipb.ac.id
  • Kusumoto, The University of Tokyo Chiba Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 770 Amatsu, Kamogawa, Chiba 299-5503, Japan ORCID https://orcid.org/0000-0002-4250-2469 E-mail: kusumoto@uf.a.u-tokyo.ac.jp

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles