Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'planting machine'

Category : Research article

article id 24047, category Research article
Kalle Kemppainen, Kalle Kärhä, Juha Laitila, Antti Sairanen, Ville Kankaanhuhta, Heli Viiri, Heli Peltola. (2024). Evaluation of the productivity and costs of excavator-based mechanized tree planting in Finland based on automated data collection. Silva Fennica vol. 58 no. 5 article id 24047. https://doi.org/10.14214/sf.24047
Keywords: site preparation; cost-efficiency; mechanization; forest regeneration; planting machine; site selection
Highlights: With proper site selection and competent machine operators, it is possible to achieve a higher productivity than 200 seedlings per operating hour in excavator-based mechanized planting; The hectare-based regeneration costs from excavator-based mechanized planting can be 5% lower than those of conventional manual planting chains; The most cost-efficient planting chain was a continuously advancing mounder combined with manual planting.
Abstract | Full text in HTML | Full text in PDF | Author Info

The poor cost-effectiveness of mechanized planting (MECP) is the main reason for the low mechanization rate of planting. In this study, we investigated the productivity of the mechanized excavator-based planting of Norway spruce (Picea abies [L.] H. Karst.) seedlings based on data collected by the Risutec Asta documentation system. We also compared the costs of a MECP chain with two different manual planting (MAP) chains, where mounding was carried out by a crawler excavator (EXC) or a continuously advancing mounder (CONT). The MECP of seedlings was carried out using an EXC equipped with a Risutec PM-160 planting device. Generally, the nine study sites in western Finland contained few surface obstacles (e.g., the logging residues had mainly been harvested), which made the conditions very suitable for MECP. The average production time taken by the MECP was 9 h ha-1. The operating hour (G15-h) productivity averaged 215 seedlings G15-h-1 , with the mean planting time being 13.8 s seedling-1. Loading 160 seedlings into the seedling cassette took approximately 10 min (3.8 s seedling-1). Overall, the cost of the MECP was about 5% lower than for the EXC + MAP. However, when productivity was set at <200 seedlings G15-h-1 , the cost of the MECP was higher than that of the EXC + MAP. Based on our findings, the most cost-efficient planting chain was CONT + MAP. However, based on our results, the required level of productivity can be achieved if the sites are suitable for MECP and the machine operators are skilled.

  • Kemppainen, School of Forest Sciences, University of Eastern Finland (UEF), P.O. Box 111, FI-80101 Joensuu, Finland; Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland ORCID https://orcid.org/0009-0000-6184-8812 E-mail: kalle.kemppainen@uef.fi (email)
  • Kärhä, School of Forest Sciences, University of Eastern Finland (UEF), P.O. Box 111, FI-80101 Joensuu, Finland ORCID https://orcid.org/0000-0002-8455-2974 E-mail: kalle.karha@uef.fi
  • Laitila, Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland ORCID https://orcid.org/0000-0003-4431-3319 E-mail: juha.laitila@luke.fi
  • Sairanen, School of Forest Sciences, University of Eastern Finland (UEF), P.O. Box 111, FI-80101 Joensuu, Finland ORCID https://orcid.org/0009-0008-8632-3797 E-mail: anttsair@student.uef.fi
  • Kankaanhuhta, Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland ORCID https://orcid.org/0000-0001-5785-5972 E-mail: ville.kankaanhuhta@luke.fi
  • Viiri, UPM-Kymmene Plc, UPM Forest, Peltokatu 26 C 4, FI-33100 Tampere, Finland ORCID https://orcid.org/0000-0003-3952-9481 E-mail: heli.viiri@upm.com
  • Peltola, School of Forest Sciences, University of Eastern Finland (UEF), P.O. Box 111, FI-80101 Joensuu, Finland ORCID https://orcid.org/0000-0003-1384-9153 E-mail: heli.peltola@uef.fi
article id 10663, category Research article
Back Tomas Ersson, Lars-Göran Sundblad, Jussi Manner. (2022). Cost analysis of seedling supply systems adapted for mechanized tree planting: a case study from southern Sweden. Silva Fennica vol. 56 no. 2 article id 10663. https://doi.org/10.14214/sf.10663
Keywords: logistics; silviculture; reforestation; tree planting machine; containerized seedling; seedling handling; system analysis
Highlights: The total cost of cardboard box concepts that increase the productivity of tree planting machines is higher than of the cultivation tray system (5–49% in the basic scenario); Increasing the boxes’ packing densities and/or the planting machines’ hourly cost increases the boxes’ cost-competitiveness; Packing density is a key factor in achieving highly cost-efficient seedling supply systems for mechanized tree planting.
Abstract | Full text in HTML | Full text in PDF | Author Info

Because today’s tree planting machines do a good job silviculturally, the Nordic forest sector is interested in finding ways to increase the planting machines’ productivity. Faster seedling reloading increases machine productivity, but that solution might require investments in specially designed seedling packaging. The objective of our study was to compare the cost-efficiency of cardboard box concepts that increase the productivity of tree planting machines with that of today’s two most common seedling packaging systems in southern Sweden. We modelled the total cost of these five different seedling packaging systems using data from numerous sources including manufacturers, nurseries, contractors, and forest companies. Under these southern Swedish conditions, the total cost of cardboard box concepts that increase the productivity of intermittently advancing tree planting machines was higher than the cost of the cultivation tray system (5–49% in the basic scenario). However, the conceptual packaging system named ManBox_fast did show promise, especially with increasing primary transport distances and increased planting machine productivities and hourly costs. Thus, our results show that high seedling packing density is of fundamental importance for cost-efficiency of cardboard box systems designed for mechanized tree planting. Our results also illustrate how different factors in the seedling supply chain affect the cost-efficiency of tree planting machines. Consequently, our results underscore that the key development factor for mechanized tree planting in the Nordic countries is the development of cost-efficient seedling handling systems between nurseries and planting machines.

  • Ersson, SLU, School of Forest Management, SE-739 21 Skinnskatteberg, Sweden ORCID https://orcid.org/0000-0003-2442-7482 E-mail: back.tomas.ersson@slu.se (email)
  • Sundblad, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: lars-goran.sundblad@skogforsk.se
  • Manner, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID https://orcid.org/0000-0002-4982-3855 E-mail: jussi.manner@skogforsk.se
article id 1323, category Research article
Tiina Laine, Kalle Kärhä, Antti Hynönen. (2016). A survey of the Finnish mechanized tree-planting industry in 2013 and its success factors. Silva Fennica vol. 50 no. 2 article id 1323. https://doi.org/10.14214/sf.1323
Keywords: regeneration; boreal; forestry; silviculture; mechanization; planting machines; critical success factors (CSFs)
Highlights: In 2013, 31 planting machines were operated by 22 businesses and planted 4.7 million seedlings on 2663 hectares in Finland; Critical success factors included expertise of planting machine operators, high quality planting, adequate amount of work, stoniness, and removal of slash; Growth of the industry will depend on improved cost-efficiency, appropriate worksites, marketing, development of planting machines.
Abstract | Full text in HTML | Full text in PDF | Author Info

The aim of the study was to update the information pertaining to mechanized tree-planting activity in Finland in 2013 and its success factors. All businesses providing a mechanized tree-planting service were interviewed and asked to describe their equipment and activities, identify critical success factors (CSFs), and suggest areas for improvement. In 2013, 31 planting machines (18 Bracke P11.a, 11 M-Planter and 2 Risutec) operated by 22 businesses planted approximately 4.7 million seedlings on 2663 hectares. CSFs included expertise of planting machine operators, high quality planting, adequate amount of work, stoniness, and removal of slash. Based on the survey, some recommendations for improving mechanized planting work can be made. Firstly, improving the cost-efficiency of mechanized planting is necessary to enhance businesses’ profitability. Secondly, worksite selection is crucial as stoniness, stumps and slash debris diminish productivity. Lastly, the popularity of mechanized planting in the future will benefit from more marketing. Many businesses were unwilling to increase the area of service, invest in new equipment, or increase the volume of planting work but they believed that mechanized planting will become more popular in the near future.

  • Laine, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: tiina.laine@luke.fi (email)
  • Kärhä, Stora Enso Wood Supply Finland, P.O. Box 309, FI-00101 Helsinki, Finland E-mail: kalle.karha@storaenso.com
  • Hynönen, University of Eastern Finland, Faculty of Science and Forestry, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: hynonena@gmail.com
article id 1064, category Research article
Back Tomas Ersson, Urban Bergsten, Ola Lindroos. (2014). Reloading mechanized tree planting devices faster using a seedling tray carousel. Silva Fennica vol. 48 no. 2 article id 1064. https://doi.org/10.14214/sf.1064
Keywords: productivity; cost analysis; seedling feed; silviculture; time study; tree planting machine; containerized seedling
Highlights: Seedling reloading onto the Bracke Planter crane-mounted planting device was twice as fast with the MagMat tray-wise-loaded carousel as today’s seedling-wise-loaded carousel; Tray-wise reloading combined with deplugging seedlings from suitable cultivation trays has the potential to be an efficient and robust way to feed seedlings on any type of tree planting machine.
Abstract | Full text in HTML | Full text in PDF | Author Info
On Nordic clearcuts, today’s tree planting machines produce high-quality but costly regenerations. Much of this high cost is attributable to the planting machines’ low productivity. One promising way of raising productivity is to lessen the time spent manually reloading seedlings onto the carousels of crane-mounted planting devices. Using MagMat, a carousel test-rig designed by engineering students, we studied how much faster tray-wise seedling reloading is on the Bracke Planter compared to reloading with today’s seedling-wise-loaded carousel. The MagMat test-rig held eight Hiko cultivation trays from which seedlings were deplugged individually and dropped into the planting tube. The time study confirmed that seedling reloading was on average twice as fast with MagMat compared to today’s seedling carousel, thereby increasing assumed planting machine productivity by 8–9% depending on the planting device used. MagMat’s cost-efficiency was analysed to be particularly reliant on its added investment cost, mechanical availability and how quickly trays can be switched automatically. Nevertheless, MagMat’s field performance illustrated the overall potential of tray-wise loading compared to piecewise seedling loading for increasing the productivity of crane-mounted planting devices. Also, deplugging proved to be a reliable method of extracting seedlings from the rigid, copper-painted Hiko cultivation trays even when performed at the excavator’s boom-tip during mounding work. We conclude that, rather than piecewise seedling loading, tray-wise loading combined with deplugging seedlings from suitable cultivation trays is a reliable and much more time-efficient method to feed seedlings on probably any type of tree planting machine.
  • Ersson, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden E-mail: back.tomas.ersson@slu.se (email)
  • Bergsten, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden E-mail: urban.bergsten@slu.se
  • Lindroos, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden E-mail: ola.lindroos@slu.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles