Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'tree retention'

Category : Research article

article id 1219, category Research article
Thomas P. Sullivan, Druscilla S. Sullivan. (2014). Diversifying clearcuts with green-tree retention and woody debris structures: conservation of mammals across forest ecological zones. Silva Fennica vol. 48 no. 5 article id 1219. https://doi.org/10.14214/sf.1219
Keywords: clearcutting; green-tree retention; small mammals; coniferous forests; ecological zones; Myodes gapperi; population dynamics; red-backed voles; woody debris structures
Highlights: Species diversity of small mammals increased with structural complexity left on clearcut sites; Productivity of red-backed vole populations was higher in sites with green-tree retention (GTR) and windrows of woody debris; GTR and windrows may provide additive effect for providing habitat to conserve mammals on clearcuts.
Abstract | Full text in HTML | Full text in PDF | Author Info
We tested the hypotheses (H) that on newly clearcut-harvested sites, (H1) abundance and species diversity of the forest-floor small mammal community, and (H2) abundance, reproduction, and recruitment of red-backed voles (Myodes gapperi Vigors), would increase with higher levels of structural retention via green-tree retention (GTR) and woody debris (dispersed and constructed into windrows). Study areas were located in three forest ecological zones in southern British Columbia, Canada. For H1, mean total abundance did generally increase with the gradient of retained habitat structure. Mean species richness and diversity were similar among treatment sites but did show an increasing gradient with structural compexity. For H2, mean abundance, reproduction, and recruitment of M. gapperi were higher in GTR and windrow sites than those without retained structures. There was a positive relationship between mean abundance of M. gapperi and total volume of woody debris across treatments. This study is the first investigation of the responses of forest-floor small mammals to an increasing gradient of retained habitat structure via GTR and woody debris on clearcuts. Our assessment of a combination of these two interventions suggested a potentially strong additive effect that could be cautiously extrapolated across three forest ecological zones. With the advent of low levels of GTR on clearcuts, woody debris structures should help provide some habitat to conserve forest mammals on harvest openings.
  • Sullivan, Department of Forest and Conservation Sciences, Faculty of Forestry, University of BC, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 E-mail: tom.sullivan@ubc.ca (email)
  • Sullivan, Applied Mammal Research Institute, 11010 Mitchell Avenue, Summerland, BC, Canada V0H 1Z8 E-mail: dru.sullivan@appliedmammal.com
article id 47, category Research article
Iulian Dragotescu, Daniel D. Kneeshaw. (2012). A comparison of residual forest following fires and harvesting in boreal forests in Quebec, Canada. Silva Fennica vol. 46 no. 3 article id 47. https://doi.org/10.14214/sf.47
Keywords: forest fires; biodiversity; boreal mixedwood; clearcuts; disturbances; residual forests; tree retention
Abstract | View details | Full text in PDF | Author Info
Residual forests are a key component of post-burned areas creating structure within burns and providing habitat and seed sources. Yet, despite their importance to biodiversity and ecosystem processes there is little information on how similar or different residuals in burned landscape are to harvested landscapes. Our goal was to examine and compare the density, size, shape, and spatial arrangement of residual forest vegetation after fire and clearcutting. We evaluated residual forest in two locations within the boreal mixedwood region of Quebec, Canada using aerial photo interpretation and ArcGIS 9.1 software. We found residual stands to be larger and more abundant in harvested zones relative to sites affected by fire. Differences with respect to shape and spatial arrangement of residual forest were also observed among disturbance types. Factors such as proximity to watercourses, watercourse shape, and physiography affected residual abundance and spatial distribution. Residual forest in harvested zones tended to be more elongated with greater edge due to rules governing forest operations. Despite greater quantity of residual forest in harvested areas than fires, managers should still be prudent as the surrounding forest matrix is reduced in many managed landscapes.
  • Dragotescu, Université du Québec à Montréal, Centre d’Étude de la Forêt (CEF), Montreal, Quebec, Canada E-mail: idragot@hotmail.com (email)
  • Kneeshaw, Université du Québec à Montréal, Centre d’Étude de la Forêt (CEF), Montreal, Quebec, Canada E-mail: ddk@nn.ca
article id 451, category Research article
Thomas P. Sullivan, Druscilla S. Sullivan, Pontus M. F. Lindgren, Douglas B. Ransome. (2010). Green-tree retention and life after the beetle: stand structure and small mammals 30 years after salvage harvesting. Silva Fennica vol. 44 no. 5 article id 451. https://doi.org/10.14214/sf.451
Keywords: biodiversity; stand structure; Pseudotsuga menziesii; ecological indicators; green-tree retention; small mammals; mountain pine beetle; Pinus contorta; salvage harvest
Abstract | View details | Full text in PDF | Author Info
We report on a retrospective investigation of the impacts of salvage harvesting of lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.), killed by an outbreak of mountain pine beetle (Dendroctonus ponderosae Hopk.) in the 1970s, with variable retention of Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco). Our inference to biodiversity was coniferous stand structure and four mammal species: the southern red-backed vole (Myodes gapperi Vigors), common shrew (Sorex cinereus Kerr), red squirrel (Tamiasciurus hudsonicus Erxleben) and northern flying squirrel (Glaucomys sabrinus Shaw). We tested hypotheses that, at 30 years after salvage harvest of beetle-killed lodgepole pine trees, (1) abundance and diversity of stand structure, and (2) abundance of mammal species, will increase with higher levels of green-tree retention (GTR). Stand structure attributes and small mammals were sampled during 2005–2008 in young pine stands, with a range of GTR seed-trees (none, dispersed, and aggregated Douglas-fir), and uncut forest in south-central British Columbia, Canada. Diameters and heights of Douglas-fir and lodgepole pine and basal area of total conifers supported hypothesis (1). Mean abundance of the red-backed vole was consistently higher (2.3 to 6.4 times) in the uncut forest than other stands. Overall mean patterns of abundance for common shrews, red squirrels, and northern flying squirrels were similar among treatment stands. Mean abundance of the red-backed vole supported hypothesis (2), but numbers of the other three species did not. There is “life after the beetle” at 30 years after salvage harvesting, and this was enhanced by GTR.
  • Sullivan, Department of Forest Sciences, Faculty of Forestry, University of BC, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 E-mail: tom.sullivan@ubc.ca (email)
  • Sullivan, Department of Forest Sciences, Faculty of Forestry, University of BC, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 E-mail: dss@nn.ca
  • Lindgren, Applied Mammal Research Institute, 11010 Mitchell Avenue, Summerland, BC, Canada V0H 1Z8 E-mail: pmfl@nn.ca
  • Ransome, Applied Mammal Research Institute, 11010 Mitchell Avenue, Summerland, BC, Canada V0H 1Z8 E-mail: dbr@nn.ca

Category : Climate resilient and sustainable forest management – Review article

article id 23057, category Climate resilient and sustainable forest management – Review article
Ane Christensen Tange, Hanne K. Sjølie, Gunnar Austrheim. (2024). Effectiveness of conservation measures to support biodiversity in boreal timber-production forests. Silva Fennica vol. 58 no. 2 article id 23057. https://doi.org/10.14214/sf.23057
Keywords: forestry; sustainable forest management; dead wood enhancement; forest certification; green tree retention; riparian buffer zone
Highlights: A systematic review of in-situ conservation measures displays that forest biodiversity levels are largely maintained upon harvest with conservation measures compared to unlogged forest; The type of control impacts the frequency of positive, not significant and negative observations; The relatively few significant results restrain distinct conclusions on the effectiveness of the assessed conservation measures to support biodiversity.
Abstract | Full text in HTML | Full text in PDF | Author Info

Large parts of the boreal forest ecosystems have been greatly affected by human use, and the current timber-oriented forest management practice that dominates boreal forests is proven to cause biodiversity and ecosystem services declines. These negative effects are mitigated in various ways, including in-situ measures implemented upon harvest. The measures comprise trade-offs between economic and ecological aims; thus, requiring solid knowledge of their effectiveness. However, comprehensive literature review of the effectiveness of such measures is scarce. We aim to fill part of this void by reviewing the scientific literature that have gauged effects of four in-situ conservation measures: green tree retention (GTR), patch retention (PR), dead wood retention (DW) and riparian buffer zones (RB). Two outcomes were considered, species richness and species abundance across taxa.

From a total of 3012 initial papers, 48 met our inclusion criteria that generated 238 unique results. Results were grouped according to control. 178 studies used mature, unlogged forest as control. Out of those, 68% of the findings were not significant, i.e., suggesting no significant impact of harvest with biodiversity measures on species richness and species abundance compared to no harvest. Eighteen percent of the observations showed negative effects and 14% of the observations showed positive effects compared to no harvest. Sixty studies used harvest with no measures as control, of which 45% showed significant positive effects, meaning that compared to harvest with no measures, harvest with conservation measures has positively effects on species richness and abundance. However, 43% of the studies found no significant effect of the implemented conservation measures compared to harvest with no measures taken.

The relatively few significant results reported restrain distinct conclusions on the effectiveness of the assessed conservation measures, but some degree of conservation measure is likely to have positive effects on biodiversity in timber-production forest. However, the scientific basis does not allow for pointing to threshold levels. Higher transparency of study design and statistical results would allow us to include more studies. There is a clear need for more research of effectiveness of common conservation measures in timber-production forests in order to strengthen the knowledge basis. In particular, there are few studies that employ harvest without any conservation measure as control. This is pivotal knowledge for forest managers as well as for policymakers for preserving biodiversity and the ecosystems in forest.

  • Tange, Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Department of Forestry and Wildlife Management, Evenstad, Norway; Glommen Mjøsen Skog SA, Elverum, Norway ORCID https://orcid.org/0009-0001-3145-8159 E-mail: ane.tange@inn.no (email)
  • Sjølie, Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Department of Forestry and Wildlife Management, Evenstad, Norway ORCID https://orcid.org/0000-0001-8099-3521 E-mail: hanne.sjolie@inn.no
  • Austrheim, University Museum Norwegian University of Science and Technology, Department of Natural History, Trondheim, Norway ORCID https://orcid.org/0000-0002-3909-6666 E-mail: gunnar.austrheim@ntnu.no

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles