Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'accumulation'

Category : Article

article id 5618, category Article
Marja-Leena Nykänen, Marianne Broadgate, Seppo Kellomäki, Heli Peltola, Christopher Quine. (1997). Factors affecting snow damage of trees with particular reference to European conditions. Silva Fennica vol. 31 no. 2 article id 5618. https://doi.org/10.14214/sf.a8519
Keywords: stem breakage; stand management; snow accumulation; topography; risk assessment; snow damage; snowfall; risk model
Abstract | View details | Full text in PDF | Author Info

Within the European Community snow damage affects an estimated 4 million m3 of timber every year, causing significant economic losses to forest owners. In Northern Europe, for example, the occurrence of snow damage has increased over the last few decades mainly due to the increase in total growing stock. The most common form of damage is stem breakage, but trees can also be bent or uprooted. Trees suffering snow damage are also more prone to consequential damage through insect or fungal attacks.

Snow accumulation on trees is strongly dependent upon weather and climatological conditions. Temperature influences the moisture content of snow and therefore the degree to which it can accumulate on branches. Wind can cause snow to be shed, but can also lead to large accumulations of wet snow, rime or freezing rain. Wet snow is most likely in late autumn or early spring. Geographic location and topography influence the occurrence of damaging forms of snow, and coastal locations and moderate to high elevations experience large accumulations. Slope plays a less important role and the evidence on the role of aspect is contradictory. The occurrence of damaging events can vary from every winter to once every 10 years or so depending upon regional climatology. In the future, assuming global warming in northern latitudes, the risk of snow damage could increase, because the relative occurrence of snowfall near temperatures of zero could increase.

The severity of snow damage is related to tree characteristics. Stem taper and crown characteristics are the most important factors controlling the stability of trees. Slightly tapering stems, asymmetric crowns, and rigid horizontal branching are all associated with high risk. However, the evidence on species differences is less clear due to the interaction with location. Management of forests can alter risk through choice of regeneration, tending, thinning and rotation. However, quantification and comparison of the absolute effect of these measures is not yet possible. An integrated risk model is required to allow the various locational and silvicultural factors to be assessed. Plans are presented to construct such a model, and gaps in knowledge are highlighted.

  • Nykänen, E-mail: mn@mm.unknown (email)
  • Broadgate, E-mail: mb@mm.unknown
  • Kellomäki, E-mail: sk@mm.unknown
  • Peltola, E-mail: hp@mm.unknown
  • Quine, E-mail: cq@mm.unknown
article id 5143, category Article
Ib Johnsen. (1981). Heavy metal deposition on plants in relation to immission and bulk precipitation. Silva Fennica vol. 15 no. 4 article id 5143. https://doi.org/10.14214/sf.a15370
Keywords: vegetation; air pollution; environmental impact; heavy metals; accumulation; immission; deposition; heavy metal intake
Abstract | View details | Full text in PDF | Author Info

Monitoring of heavy metal accumulation in plants has been used to reflect the deposition of heavy metals in terrestrial ecosystems. In some cases, the accumulation rates in plants are linearly correlated to deposition measured as bulk precipitation collected in funnel samplers. It is uncertain, however, how large the contribution due to adsorption/impaction of small particles is to this relationship. The need for design of enlightening experiments on deposition rates in different vegetation types and their relation to immission and bulk precipitation data is discussed.

  • Johnsen, E-mail: ij@mm.unknown (email)

Category : Article

article id 7669, category Article
Leena Finér. (1991). Effect of fertilization on dry mass accumulation and nutrient cycling in Scots pine on an ombrotrophic bog. Acta Forestalia Fennica no. 223 article id 7669. https://doi.org/10.14214/aff.7669
Keywords: Pinus sylvestris; biomass; fertilization; litterfall; drained peatland; nutrients; production; accumulation; nutrient uptake
Abstract | View details | Full text in PDF | Author Info

The first three-year effects of PK(MgB) and NPK(MgB) fertilization on the dry mass accumulation and nutrient cycling were studied in a Scots pine (Pinus sylvestris L.) stand growing on a drained low-shrub pine bog in Eastern Finland. The total dry mass of the tree stand before fertilization was 78 tn/ha, of which the above-ground compartments accounted for 69%. The annual above-ground dry mass production was 6.3 tn/ha, 51% of it accumulating in the tree stand.

The study period was too short for detecting any fertilization response in the stems. The total dry mass accumulation was not affected, because the increase in foliar and cone dry masses after both fertilization treatments, and that of the living branches after NPK fertilization, were compensated by the decrease in the dry mass of dead branches.

The nutrients studied accounted for 392 kg/ha (0.49%) of the total dry mass of the tree stand before fertilization. The amounts were as follows; N 173 kg/ha (44%), Ca 90 kg (23%), K 58 kg/ha (15%). The rest (18%) consisted of P, Mg, S and micronutrients combined. The unfertilized trees took up the following amounts of nutrients of the soil: N 15.6, Ca 12.8, K 4.1, P 1.3, MG 1.7, and S and Mn 1.5 kg/ha. The uptake of Fe and Zn was 510 and 130 g/ha and that of B and Cu less than 100 g/ha. More than 50% of the nutrient uptake, except for that of K and Fe, was released in litterfall. The results indicated very efficient cycling of K, Mn and B between the soil and trees.

The fertilized stands accumulated more N, P, K and B than the unfertilized ones during the tree-year study period. The increased accumulation corresponded to 35% (52 kg/ha) of the N applied on the NPK fertilized plots, 10% of the P, 25% of the K and 10% of the B on the PK and NPK fertilized plots. The increased amount of B released in litterfall after fertilization was equivalent to 4% of the applied B. Fertilization inhibited the uptake of Mn and Ca.

The PDF includes a summary in Finnish.

  • Finér, E-mail: lf@mm.unknown (email)

Category : Research article

article id 455, category Research article
Seppo Kellomäki, Matti Maajärvi, Harri Strandman, Antti Kilpeläinen, Heli Peltola. (2010). Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fennica vol. 44 no. 2 article id 455. https://doi.org/10.14214/sf.455
Keywords: climate change; soil frost; precipitation; temperature; A2 climate scenario; snow accumulation; soil carrying capacity; soil moisture
Abstract | View details | Full text in PDF | Author Info
This study considered how climate change affects the accumulation of snow, the soil moisture and soil frost at sites without tree cover in boreal conditions in Finland (60°–70°N). An increase of 4.5 °C in annual mean temperature and 20 % in annual precipitation were assumed for Finland by the year 2100 according to A2 emission scenario. Along with climate, the soil type of the permanent inventory plots of the Finnish National Forest Inventory was used. Soil and climate data were combined by using a process-based ecosystem model. Calculations were done for four periods: current climate (1971–2000), near future (2001–2020), mid-term future (2021–2050) and long-term future (2071–2100). According to our simulations, the average monthly duration and depth of snow decreased over the simulation period. However, the increasing precipitation may locally increase the snow depths in the mid-term calculations. In the autumn and winter, the average volumetric soil moisture content slightly increased in southern Finland during the near future, but decreased towards the end of the century, but still remained on a higher level than presently. In northern Finland, the soil moisture in the autumn and winter increased by the end of this century. In the summertime soil moisture decreased slightly regardless of the region. Throughout Finland, the length and the depth of soil frost decreased by the end of the century. In the south, the reduction in the depth was largest in the autumn and spring, while in the mid-winter it remained relatively deep in the middle of the century. In the north, the depth tended to increase during the first two calculation periods, in some areas, even during the third calculation period (2071–2100) due to reduced insulation effects of snow during cold spells. The wintertime increase in soil moisture and reduced soil frost may be reflected to reduced carrying capacity of soil for timber harvesting.
  • Kellomäki, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: seppo.kellomaki@uef.fi (email)
  • Maajärvi, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: mm@nn.fi
  • Strandman, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: hs@nn.fi
  • Kilpeläinen, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: ak@nn.fi
  • Peltola, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: hp@nn.fi
article id 230, category Research article
Risto Jalkanen, Sheila Hicks, Tarmo Aalto, Hannu Salminen. (2008). Past pollen production reconstructed from needle production in Pinus sylvestris at the northern timberline: a tool for evaluating palaeoclimate reconstructions. Silva Fennica vol. 42 no. 4 article id 230. https://doi.org/10.14214/sf.230
Keywords: Scots pine; age-depth chronology; annual resolution; needle trace method; NTM; pollen accumulation rate; temperature reconstruction; tree line
Abstract | View details | Full text in PDF | Author Info
Annual needle production (PROD) of Scots pine (Pinus sylvestris L.) and pine pollen accumulation rates (PAR) are compared along a 5-site transect from the Arctic Circle to the northern timberline. PROD is calculated using the Needle Trace Method (NTM). PAR is monitored by two series of pollen traps, located in the centres of mires and within forests, respectively. There is a strong year-to-year agreement in PAR and PROD between the sites for the common 19-year period for which both proxies are available. Mean July temperature of the previous year (TJUL–1) correlates statistically significantly with PROD at all five sites and with PAR in the four northernmost sites. There is also a significant relationship between TJUN–1 and PROD at all sites, and TJUN and PAR at the two northernmost sites. PROD and PAR correlate most strongly in the three near tree line sites, where PROD explains up to 51% of the variation in PAR. On the basis of the calibration between PROD, PAR and TJUL–1, PROD and TJUL–1 are used to reconstruct past PAR. That such a reconstruction is realistic is supported by its agreement with the pollen record for 1982–2000 and with records of male flowering for the period 1956–1973. The use of PROD in reconstructing past PAR can help in interpreting the fossil pollen signal in terms of climate rather than vegetation change and in evaluating the high-resolution dating of peat profiles and calculations of the rate of peat accumulation.
  • Jalkanen, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail: risto.jalkanen@metla.fi (email)
  • Hicks, Institute of Geosciences, P.O. Box 3000, FI-90014 University of Oulu, Finland E-mail: sh@nn.fi
  • Aalto, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail: ta@nn.fi
  • Salminen, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail: hs@nn.fi
article id 490, category Research article
Veiko Uri, Hardi Tullus, Krista Lõhmus. (2003). Nutrient allocation, accumulation and above-ground biomass in grey alder and hybrid alder plantations. Silva Fennica vol. 37 no. 3 article id 490. https://doi.org/10.14214/sf.490
Keywords: biomass; Alnus incana; Alnus incana x Alnus glutinosa; grey alder; hybrid alder; nutrient allocation; nutrient accumulation
Abstract | View details | Full text in PDF | Author Info
The aim of the present work was to investigate the nutrient (N,P,K) allocation and accumulation in grey alder (Alnus incana (L.) Moench) and hybrid alder (Alnus incana (L.) Moench x Alnus glutinosa (L.) Gaertn.) plantations growing on former agricultural land and to estimate the above-ground biomass production during 4 years after establishment. In August of the 4th year, when leaf mass was at its maximum, the amount of nitrogen accumulated in above-ground biomass of grey alder stand was 142.0 kg ha–1, the amount of phosphorus 16.3 kg ha–1 and the amount of potassium 49.5 kg ha–1. The amount of nitrogen accumulated in a hybrid alder stand totalled 76.8 kg ha–1, that of phosphorus 6.2 kg ha–1 and that of potassium 28.2 kg ha–1. The smaller amounts of N,P and K bound in the hybrid alder plantation are related to the smaller biomass of the stand. Still, the amounts of N,P and K consumed for the production of one ton of biomass were similar in the case of up to 4-year-old grey alder and hybrid alder stands. In the 4th year, the amount of nutrients consumed in one ton of biomass produced were: 16.0 kg N, 1.6 kg P and 5.4 kg K for grey alder and 14.6 kg N, 1.1 kg P and 5.2 kg K for hybrid alder. In the 4th year the total above-ground biomass (dry mass) of grey alder (15750 plants ha–1) amounted to 12.3 t ha–1, current annual increment being 6.7 t ha–1. In hybrid alder stands (6700 plants ha–1), the respective figures were 6.1 t ha–1 and 4.5 t ha–1. Comparison of the production capacity on the basis of mean stem mass in the 4th year revealed that the stem mass of grey alder exceeded that of hybrid alder (0.64 kg and 0.58 kg, respectively). Grey alder outpaced hybrid alder in height growth; in the 4th year after establishment, the mean height of the grey alder stand was 4.6 ± 0.9 m and that of the hybrid alder plantation 3.5 ± 0.9 m.
  • Uri, Institute of Silviculture, Estonian Agricultural University, Kreutzwaldi 5, 51014 Tartu, Estonia E-mail: vuri@eau.ee (email)
  • Tullus, Institute of Silviculture, Estonian Agricultural University, Kreutzwaldi 5, 51014 Tartu, Estonia E-mail: ht@nn.ee
  • Lõhmus, Institute of Geography, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia E-mail: kl@nn.ee

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles