Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'decay function'

Category : Research article

article id 1740, category Research article
Ram P. Sharma, Zdeněk Vacek, Stanislav Vacek. (2017). Modelling tree crown-to-bole diameter ratio for Norway spruce and European beech. Silva Fennica vol. 51 no. 5 article id 1740. https://doi.org/10.14214/sf.1740
Keywords: Picea abies; Fagus sylvatica; dominant height; exponential decay function; mixed effect model; spatially explicit competition index; species proportion; species mixture effect
Highlights: Modelled crown-to-bole diameter ratio (CDBDR) using tree and stand-level predictors, and sample plot random effects; Spatially explicit mixed-effects model described the largest part of CDBDR variation with no significant trend in the residuals; The CDBDR increased with increasing stand development stage and site quality, but decreased with decreasing proportion of the species of interest, and increasing competition.
Abstract | Full text in HTML | Full text in PDF | Author Info

Crown dimensions are correlated to growth of other parts of a tree and often used as predictors in growth models. The crown-to-bole diameter ratio (CDBDR), which is a ratio of maximum crown width to diameter at breast height (DBH), was modelled using data from permanent sample plots located on Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) stands in different parts of the Czech Republic. Among various tree and stand-level measures evaluated, DBH, height to crown base (HCB), dominant height (HDOM), basal area of trees larger in diameter than a subject tree (BAL), basal area proportion of the species of interest (BAPOR), and Hegyi’s competition index (CI) were found to be significant predictors in the CDBDR model. Random effects were included using the mixed-effects modelling to describe sample plot-level variation. For each species, the mixed-effects model described a larger part of the variation of the CDBDR than nonlinear ordinary least squares model with no trend in the residuals. The spatially explicit mixed-effects model showed more attractive fit statistics [conditional R2 ≈ 0.73 (spruce), 0.78 (beech)] than its spatially inexplicit counterpart [conditional R2 ≈ 0.71 (spruce), 0.76 (beech)]. The model showed that CDBDR increased with increasing HDOM – a measure that combines the stand development stage and site quality – but decreased with increasing HCB and competition (increasing BAL and CI), and decreasing proportions of the species of interest (increasing BAPOR). For both species, the spatially explicit mixed-effects model should be a preferred choice for a precise prediction of the CDBDR. The CDBDR model will have various management implications such as determination of spacing, stand basal area, stocking, and planning of appropriate species mixture.

  • Sharma, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: sharmar@fld.czu.cz (email)
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekz@fld.czu.cz
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekstanislav@fld.czu.cz
article id 259, category Research article
Jani Laturi, Jarmo Mikkola, Jussi Uusivuori. (2008). Carbon reservoirs in wood products-in-use in Finland: current sinks and scenarios until 2050. Silva Fennica vol. 42 no. 2 article id 259. https://doi.org/10.14214/sf.259
Keywords: climate change; wood products; carbon pool; present value; decay function
Abstract | View details | Full text in PDF | Author Info
This study addresses the question of how much carbon will be sequestered in wood products during the coming decades in Finland. Using sawnwood and other wood material consumption data since the 1950s and inventory data of carbon reservoirs of wood products in the Finnish construction and civil engineering sector, we first derive estimates for the carbon reservoirs in wood products-in-use in that sector. We then extend the estimate to include all wood products-in-use. We find that the carbon pool of wood products in the Finnish construction and civil engineering sector grew by about 12% since an inventory for 2000, and that the overall estimate for carbon reservoirs of Finnish wood products in 2004 was 26.6 million tons of carbon. In building the scenarios until 2050, econometric time series models accounting for the relationship between wood material consumption and the development of GDP were used. The results indicate that the range of carbon reservoirs of wood products in Finland will be 39.6–64.2 million tons of carbon in the year 2050. The impacts of different forms of the decay function on the time-path of a carbon sink and its value in wood products were also studied. When a logistic decay pattern is used, the discounted value of the predicted carbon sink of wood products in Finland is between EUR850 and EUR1380 million – at the price level of EUR15/CO2 ton – as opposed to 440–900 million euros, if a geometric decay pattern is used.
  • Laturi, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: jani.laturi@metla.fi (email)
  • Mikkola, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: jm@nn.fi
  • Uusivuori, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: ju@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles