The effect of species mixture was studied in a mixed stand of Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) by simulating around 100 different treatment schedules during the rotation in a naturally regenerated even-aged stand located on a site of medium fertility in North Karelia, Finland. Both thinning from below and thinning from above were applied. Optimum rotations were determined by maximising the net present value calculated to infinity and different treatment schedules were compared with the net present value over one rotation as per rotation applied. In the optimum treatment programme, the proportion of pines was decreased by half of the basal area in the first thinning stage and by the end of the rotation to about one third. In thinning from above, the proportion of pines can be maintained at a slightly higher level. It is economically profitable to maintain the growing stock capital at approximately the level recommended by Forest Centre Tapio, a semi-governmental forestry authority. With non-optimum species composition, the loss in net present value over one rotation can be about 10 % in thinning from below and about 20 % in thinning from above.
Length of the regeneration period is a criterion commonly used for comparing different reforestation methods. The time factor should be evaluated using a realistic system for long-term planning. In this paper the preliminary evaluation is made by simplified calculations based on the development series. The slow regeneration method is assumed to be otherwise equal to the rapid one but it has a 5- or 10-years delay at the beginning, and the rotation is thus the final cutting age plus 5- or 10-years delay. Cost of the time delay is taken to be the difference in reforestation costs that makes the rapid and the slow methods equivalent. Calculations are made using zero costs for the slow method; but if the cost of the slow method increases, the critical cost difference decreases very slowly. The final cutting age and the regeneration method must be decided simultaneously. Therefore, the cost of the time delay is presented as a function of final cutting age. By maximizing the average annual revenue, rotation can be even increased if more rapid but more expensive regeneration method is used.
The PDF includes a summary in English.