The existence and direction of causal relationships between the time series for the Finnish roundwood market for the period 1960–1994 is tested. Using simple bivariate analysis, we found evidence that for both logs and pulpwood, the lagged prices are helpful in forecasting quantity for the next year, but not vice versa. Saw log stumpage prices have significantly Granger-caused pulpwood prices over the business cycles, but the effect has diminished towards the present time. For quantities traded, the direction of causality was rather from pulpwood to saw logs. The consistency of bivariate test results was checked by the Granger-causality tests within trivariate VAR-models for both markets, and the results were found to be fairly similar to bivariate tests. The price fluctuations in the international markets for forest products have been found to be carried to domestic wood markets dominantly via the pulpwood part of the market.
The Economic Council asked Heikinheimo, Holopainen and Kuusela to prepare a report on the development of Finland’s forest resources up to the beginning of the next century. The expansion of forest industry beyond the level foreseen in earlier forecasts, the large-scale removal and neglect of the basic improvements required have weakened the condition of the wood production to such an extent that extensive measures are needed to ensure the continuity of the supply of wood. The results of the calculations are formed in three separately analysed alternatives.
Alternative I: Realisation of the Teho programme and the removal corresponding to it. The development of the growing stock according to the programme would only permit a cut amounting to an annual drain of ca. 51 million m3 up to the year 2000. After that it would be possible gradually to increase the removal. This drain would not itself to utilise fully the already existing production capacity of the industry.
Alternative II: Consequences of the predicted removal if the Teho programme is realised as such. The wood utilization forecast based on the premises given to the team show that the annual drain will grow in 1964–1975 from 52 to 58 million m3, and thereafter by 0.5% annually. This would lead to over-cutting, and exhaust the present growing stock by the turn of the century. If annual total drain of ca. 58 million m3 would after 1975 be sufficient, exhaustion of the growing stock would be postponed for 4–5 years.
Alternative III. Teho programme expanded in conformity with the removal forecast. A new programme is proposed, which includes, among others, large scale fertilization of fully grown firm forest land at about the rate of 100,000 ha/year, intensified artificial regeneration, assurance of the supply of planting stock and seed, increase of forest drainage from the present 155,000 to 250,000 ha/year by 1970, site preparation of the cutting areas for artificial regeneration, increase of tending or seeding stands to 300,000 ha/year, replacement of fuelwood by other fuels, increase of wood import and new forest roads.
This paper describes different methods of long-term forecasts in forest management planning with a special attention on intention forecasts for a total forest property or district. Methods for calculating the sustained yield on the basis of the actual increment or the yearly area cut are discussed. It is concluded that a better estimate of the sustained yield is obtainable by the application of a long-term forecast technique. Forecasts for 100 years should not be viewed as plans, but as a background for making short-term decisions. Some of the long-term-type programmes, such as the programme of maximum profit, sustained yield in volume and in money are discussed briefly.
It is pointed out that there is often present a conflict between the various elements of the policy formulated by a forest owner. This leads to the conclusion that the calculations of the profitability of single projects may be misleading.
The precision of a long-term forecast is discussed, and how under certain assumptions the error of the allowable cut is influenced by errors in area, volume, age etc. It is shown that the precision in area and volume is more important in this connection than, say, the precision in increment. In conclusion, existing knowledge, methods and equipment for calculations constitute a basis for long-term forecasts which make them an important instrument in forest management planning.
The PDF includes a summary in English.
The most important fact to consider in attempting to develop an increment forecast method is the great dependency of the increment on the growing stock volume. Although the site (soil and climate) produces the increment and volume, there would be no increment without the volume as an increment capital. The cutting possibilities are still more dependent on the existing growing stock. Thus, the primary characteristics in management planning is the growing stock volume. The methodological starting point in this paper is that the increment is considered dependent variable which can be explained by other growing stock characteristics. The basis of the analysis and the primary object of this investigation is the increment percentage. Using available and measured sample plots the increment percentage will be analysed as a dependent variable by other growing stock characteristics.
The main emphasis will be the methods which can be used in connection with the interacting increment and drain. An increment-drain forecast should give at least approximately the allowable cut in timber products. Thus, it will be attempted to find the stock characteristics determining the amounts of timber products.
The article introduces the theory and basic concepts of the increment-drain process, increment functions and basal area – height method, and discusses estimation of timber products in increment-drain forecast, fluctuations of the increment, mortality in connection with the increment-drain forecast, and the scheme of cutting budget for desirable growing stock. Finally, it gives some proposals, based on the investigation, for preparing an increment-drain forecast for a large forest area.
The PDF includes a summary in Finnish.
Short run market forecasting is desirable both for adjusting production and for regulating the national employment policy. In this study a forecast is made for one product. The purpose of the study is to develop a short run model describing newsprint sales in Finland that will combine mathematical simplicity, accuracy of description and universality.
Two methods of selecting variables seemed to be available. According to the first, newsprint consumption is divided into components, each of which is considered separately. The second method, which proved more fruitful, starts out directly from factors influencing the publishers’ decisions in purchasing newsprint, eliminating the least significant intuitively and simultaneously determining the lags.
The models developed in this study are capable of forecasting potential consumption. Even the best models in this study are multicollinear. The further into the future a forecast is extended, the greater is the possibility that relationships between the explanatory variables will change. It is intended that the newsprint seller will profit from the models achieved by using them to forecast sales in a future period, so that he can avoid both loss of interest due to acquiring a surplus of raw material or acute shortages of raw material.
The PDF includes a summary in Finnish.
The purpose of this study was to clarify increment forecast methods in connection with the cutting budget. The emphasis is laid on the Finnish increment per cent methods. A tentative attempt is made to carry out a passage calculation. Increment forecasts are accomplished for diameter class distribution of a 60 years old Scots pine (Pinus sylvestris L.) stand. The increment data for the growing stock are taken from the domestic increment calculating tables.
When comparing the results of the two methods, the increment values are expressed in rabatt per cent in which the forecasted annual increment is in proportion to the initial value of the growing stock. It will be emphasized that the weak point in the domestic budgets is in the relation between the increment of the developable stock and the increment of the exploitable stock. Almost all the Finnish increment data are from the developable trees and the estimates of the increment of the exploitable trees have not been on sufficient facts.
The PDF includes a summary in English.