Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'compaction'

Category : Article

article id 5056, category Article
Liisa Nylund, Antti Haapanen, Seppo Kellomäki, Markku Nylund. (1980). Radial growth of Scots pine and soil conditions at some camping sites in southern Finland. Silva Fennica vol. 14 no. 1 article id 5056. https://doi.org/10.14214/sf.a14997
Keywords: Pinus sylvestris; Scots pine; ground vegetation; radial growth; trampling; soil compaction; recreation; camping areas
Abstract | View details | Full text in PDF | Author Info

Radial growth of Scots pine (Pinus sylvestris L.) was investigated in seven camping areas located in Southern Finland. Radial growth reduction of 20–40% were found. The magnitude of this reduction was related to the amount of damage in the trees, and the age of the trees. A loss of humus, exposure of the roots and soil compaction were associated with the use of area but not related to the reduction in growth.

The PDF includes a summary in Finnish.

  • Nylund, E-mail: ln@mm.unknown (email)
  • Haapanen, E-mail: ah@mm.unknown
  • Kellomäki, E-mail: sk@mm.unknown
  • Nylund, E-mail: mn@mm.unknown

Category : Research article

article id 22017, category Research article
Andis Lazdiņš, Ainārs Lupiķis, Kaspars Polmanis, Arta Bārdule, Aldis Butlers, Santa Kalēja. (2024). Carbon stock changes of drained nutrient-rich organic forest soils in Latvia. Silva Fennica vol. 58 no. 1 article id 22017. https://doi.org/10.14214/sf.22017
Keywords: drainage; hemiboreal forests; organic soil; peat compaction; peatland forests; subsidence of the peat layer
Highlights: In moderate nutrient-rich forest site type (Myrtillosa turf. mel.), a significant subsidence of peat layer after drainage is associated with compaction rather than decomposition of peat; In nutrient-rich forest site type (Oxalidosa turf. mel.), a contribution of soil C stock losses to subsidence of the peat layer is significant; In moderate nutrient-rich forest site type (Myrtillosa turf. mel.), type of dominant tree species has higher impact on changes in soil C stock after drainage than in nutrient-rich forest site type (Oxalidosa turf. mel.); Distribution of different forest site types involving soil nutrient status has to be taken into account when CO2 emissions from drained organic soil in forest land are estimated at national level.
Abstract | Full text in HTML | Full text in PDF | Author Info

Impact of drainage of organic soils in forest land on soil carbon (C) stock changes is of high interest not only to accurately estimate soil C stock changes, but also to provide scientifically based recommendations for forest land management in context of climate change mitigation. To improve knowledge about long-term impact of drainage on nutrient-rich organic soils in hemiboreal forests in Latvia, 50 research sites representing drained conditions (Oxalidosa turf. mel. (Kp) and Myrtillosa turf. mel. (Ks) forest site types) and undrained conditions as control areas (Caricoso-phragmitosa, Dryopterioso-caricosa and Filipendulosa forest site types) were selected. Soil C stock changes after drainage was evaluated by comparing current C stock in drained organic soils to theoretical C stock before drainage considering impact of soil subsidence. During the 53-years period after drainage, the peat subsidence was higher in nutrient-rich Kp forest site type compared to moderate nutrient-rich Ks forest site type (peat subsided by 37.0 ± 4.8 and 23.3 ± 4.8 cm, respectively). In nutrient-rich Kp forest site type, soil C stock decreased by 4.98 ± 1.58 Mg C ha-1 yr-1 after drainage, while no statistically significant changes in soil C stock (0.19 ± 1.31 Mg C ha-1 yr-1) were observed in moderate nutrient-rich soils in Ks forest site type. Thus, in Ks forest site type, the main driver of the peat subsidence was the physical compaction, while in Kp forest site type contribution of organic matter decomposition and consequent soil C losses to subsidence of the peat was significant.

  • Lazdiņš, Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava), Rigas str. 111, Salaspils, LV-2169, Latvia ORCID https://orcid.org/0000-0002-7169-2011 E-mail: andis.lazdins@silava.lv
  • Lupiķis, Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava), Rigas str. 111, Salaspils, LV-2169, Latvia E-mail: ainars.lupikis@inbox.lv
  • Polmanis, Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava), Rigas str. 111, Salaspils, LV-2169, Latvia ORCID https://orcid.org/0000-0003-2579-353X E-mail: kaspars.polmanis@silava.lv (email)
  • Bārdule, Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava), Rigas str. 111, Salaspils, LV-2169, Latvia ORCID https://orcid.org/0000-0003-0961-5119 E-mail: arta.bardule@silava.lv
  • Butlers, Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava), Rigas str. 111, Salaspils, LV-2169, Latvia ORCID https://orcid.org/0000-0003-3118-1716 E-mail: aldis.butlers@silava.lv
  • Kalēja, Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava), Rigas str. 111, Salaspils, LV-2169, Latvia E-mail: santa.kaleja@silava.lv
article id 10211, category Research article
Gernot Erber, Raffaele Spinelli. (2020). Timber extraction by cable yarding on flat and wet terrain: a survey of cable yarder manufacturer’s experience. Silva Fennica vol. 54 no. 2 article id 10211. https://doi.org/10.14214/sf.10211
Keywords: forest soils; soil compaction; logging equipment; sensitive soils
Highlights: Survey of all European cable yarder manufacturers on flat-terrain yarding; Manufacturers are frequently contacted concerning flat-terrain yarding; Forest resource inaccessibility, regulatory and environmental considerations are most important motivations; Lack of clearance, tree stability and installation costs are major challenges; Mobile, self-anchoring tail spar is considered a chief adaptation; Cost-competitiveness with ground-based systems cannot be achieved without subsidies; Increasing environmental awareness and climate change present opportunity to expand flat-terrain cable yarding.
Abstract | Full text in HTML | Full text in PDF | Author Info

Cable yarding is a general solution for load handling on sites not accessible to ground-based machinery, and is typically associated with steep terrain. On flat terrain, such conditions can primarily be found on soft or wet soils, most frequently encountered in Central and Northern European countries. Today, changed environmental and market conditions may offer an unprecedented opportunity to the actual implementation of cable yarding on flat terrain in commercial operations. The study goal was to collect cable yarder manufacturers experience regarding the use and adaption of cable yarding technology on flat terrain. European manufacturers of cable yarding technology were interviewed about customer experience, particular challenges, adaptation potential, future potential and main hurdles for the expansion of cable yarding on flat terrain. Almost all manufacturers have received requests for flat-terrain yarding technology solutions, primarily from Germany. Temporal or permanent inaccessibility, regulatory or environmental reasons were the most frequent motivation for considering cable yarding technology. Installation was considered particularly challenging (clearance, stable anchoring). Potential adaptations included higher towers, artificial anchors, mechanized bunching before extraction and un-guyed yarder-systems. An artificial, highly mobile, self-anchoring tail spar was considered the most useful adaptation. While concerned about limited profitability and qualified labour shortage, most manufacturers demonstrated a positive or neutral view concerning the expansion of cable yarding on flat terrain. However, cable yarding is not considered to be cost-competitive wherever ground-based systems can be employed and cable yarding is not subsidized.

  • Erber, University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Forest Engineering, Peter Jordan Strasse 82, 1190 Vienna, Austria ORCID https://orcid.org/0000-0003-1606-5258 E-mail: gernot.erber@boku.ac.at (email)
  • Spinelli, CNR-IBE Consiglio Nazionale delle Ricerche-Istituto per la BioEconomia, Via Madonna del Piano 10, Sesto Fiorentino, Firenze, I-50019, Italy; AFORA, University of the Sunshine Coast, Locked Bag 4, Maroochydore, QLD, Australia ORCID https://orcid.org/0000-0001-9545-1004 E-mail: spinelli@ivalsa.cnr.it
article id 10134, category Research article
Matti Sirén, Jari Ala-Ilomäki, Harri Lindeman, Jori Uusitalo, Kalle E.K. Kiilo, Aura Salmivaara, Ari Ryynänen. (2019). Soil disturbance by cut-to-length machinery on mid-grained soils. Silva Fennica vol. 53 no. 2 article id 10134. https://doi.org/10.14214/sf.10134
Keywords: rut formation; soil compaction; sandy soil; silty soil; harvesting damage
Highlights: The number of machine passes, volumetric water content in the mineral soil and the depth of the organic layer were the controlling factors for rut formation; The harvester rut depth was a good predictor of the forwarder rut formation; Changes in the penetration resistance were highest at depths of 20–40 cm.
Abstract | Full text in HTML | Full text in PDF | Author Info

Factors affecting soil disturbance caused by harvester and forwarder were studied on mid-grained soils in Finland. Sample plots were harvested using a one-grip harvester. The harvester operator processed the trees outside the strip roads, and the remaining residues were removed to exclude the covering effect of residues. Thereafter, a loaded forwarder made up to 5 passes over the sample plots. The average rut depth after four machine passes was positively correlated to the volumetric water content at a depth of 0–10 cm in mineral soil, as well as the thickness of the organic layer and the harvester rut depth, and negatively correlated with penetration resistance at depths of both 0–20 cm and 5–40 cm. We present 5 models to predict forwarder rut depth. Four include the cumulative mass driven over a measurement point and combinations of penetration resistance, water content and the depth of organic layer. The fifth model includes harvester rut depth and the cumulative overpassed mass and provided the best fit. Changes in the penetration resistance (PR) were highest at depths of 20–40 cm. Increase in BD and VWC decreased PR, which increased with total overdriven mass. After four to five machine passes PR values started to stabilize.

  • Sirén, Natural Resources Institute Finland (Luke) c/o Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland E-mail: matti.siren@luke.fi (email)
  • Ala-Ilomäki, Natural Resources Institute Finland (Luke) c/o Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland ORCID http://orcid.org/0000-0002-6671-7624 E-mail: jari.ala-ilomaki@luke.fi
  • Lindeman, Natural Resources Institute Finland (Luke), Korkeakoulunkatu 7, FI-33720 Tampere, Finland E-mail: harri.lindeman@luke.fi
  • Uusitalo, Natural Resources Institute Finland (Luke), Korkeakoulunkatu 7, FI-33720 Tampere, Finland ORCID http://orcid.org/0000-0003-3793-1215 E-mail: jori.uusitalo@luke.fi
  • Kiilo, Versowood, Teollisuuskatu 1, FI-11130 Riihimäki, Finland E-mail: kalle.kiilo@versowood.fi
  • Salmivaara, Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland E-mail: aura.salmivaara@luke.fi
  • Ryynänen, Natural Resources Institute Finland (Luke), Kaironiementie 15, FI-39700 Parkano, Finland E-mail: ari.ryynanen@luke.fi
article id 1003, category Research article
Raffaele Spinelli, Carolina Lombardini, Natascia Magagnotti. (2014). The effect of mechanization level and harvesting system on the thinning cost of Mediterranean softwood plantations. Silva Fennica vol. 48 no. 1 article id 1003. https://doi.org/10.14214/sf.1003
Keywords: chipping; biomass; logging; compaction; stand damage
Highlights: Whole-tree harvesting is 40–50% cheaper than cut-to-length harvesting; Mechanization reduced thinning cost by a factor 4; Between 1.5 and 6% of the residual trees were damaged; Mechanized cut-to-length harvesting allows controlled biomass release; Mechanized whole-tree harvesting is the cheapest option for energy chip production.
Abstract | Full text in HTML | Full text in PDF | Author Info
The study compared motor-manual cut-to-length (CTL) harvesting, motor-manual whole-tree (WT) harvesting, mechanized CTL harvesting and mechanized WT harvesting as applied to the production of energy chips from the second thinning of Mediterranean pine plantations in flat terrain. Mechanization increased productivity between 6 and 20 times, depending on process step. It also allowed reducing thinning cost by a factor 4. Shifting from CTL to WT harvesting resulted in a reduction of harvesting cost between 40 and 50%. Fuel consumption was between 40 and 100% higher for CTL harvesting than for WT harvesting. Mechanization entailed a reduction of fuel consumption between 10 and 40%. Stand damage was generally low, between 1.5 and 6%. Mechanized CTL harvesting resulted in the lowest incidence of wounding, and the difference between mechanized CTL and manual WT harvesting was statistically significant. Soil compaction was absent or very small, depending on treatment. Mechanized thinning may produce larger increases of soil bulk density, compared to motor-manual thinning, but the difference is small, although significant. CTL harvesting leaves a larger amount of biomass on the soil, which relieves possible concerns about soil nutrient depletion. On the other hand, heavy residue loads may increase fire risk especially in sensitive Mediterranean environments.
  • Spinelli, CNR IVALSA,Via Madonna del Piano 10, Sesto Fiorentino (FI), Italy E-mail: spinelli@ivalsa.cnr.it (email)
  • Lombardini, CNR IVALSA,Via Madonna del Piano 10, Sesto Fiorentino (FI), Italy E-mail: lombardini@ivalsa.cnr.it
  • Magagnotti, CNR IVALSA,Via Biasi 75, S. Michele all’Adige (TN), Italy E-mail: magagnotti@ivalsa.cnr.it
article id 221, category Research article
Glen Murphy, Rod Brownlie, Mark Kimberley, Peter Beets. (2009). Impacts of forest harvesting related soil disturbance on end-of-rotation wood quality and quantity in a New Zealand radiata pine forest. Silva Fennica vol. 43 no. 1 article id 221. https://doi.org/10.14214/sf.221
Keywords: Pinus radiata; harvesting; compaction; wood density; tree growth; stiffness; litter removal; nitrogen deficiency
Abstract | View details | Full text in PDF | Author Info
The long-term effect of soil disturbance (litter removal, topsoil removal and compaction) from forest harvesting on wood quality and quantity of second-rotation Pinus radiata growing on a clay loam soil, was assessed at the end the rotation, 26 years after planting. Relative to Control plots, average tree and stand total volume at rotation end was not significantly affected by litter removal and nil or light compaction, but was significantly reduced by 28% by litter and topsoil removal and moderate subsoil compaction, and further reduced by 38% by heavy compaction. Wood density at breast height in the inner rings of trees in the most disturbed treatments was elevated by up to 30 kg m–3. This occurred because these treatments were more N deficient as reflected by foliar N levels during the first 11 years of growth relative to the Control. However, no treatment differences in wood density were evident in outer rings, and by rotation age overall mean density did not differ significantly between treatments. Neither acoustic velocity of standing trees, nor acoustic velocity of logs, was significantly affected by soil disturbance, indicating that stiffness of lumber cut from trees in the trial was likely to be similar for all treatments. Economic impacts of soil disturbance and compaction on this soil type will therefore result largely from the considerable negative impacts on final tree size, with little or no compensation from improved wood properties.
  • Murphy, Forest Engineering, Resources and Management Department, Oregon State University, Corvallis, Oregon, USA E-mail: glen.murphy@oregonstate.edu (email)
  • Brownlie, Scion Research, Rotorua, New Zealand E-mail: rb@nn.nz
  • Kimberley, Scion Research, Rotorua, New Zealand E-mail: mk@nn.nz
  • Beets, Scion Research, Rotorua, New Zealand E-mail: pb@nn.nz
article id 416, category Research article
Glen Murphy, John G. Firth, Malcolm F. Skinner. (2004). Long-term impacts of forest harvesting related soil disturbance on log product yields and economic potential in a New Zealand forest. Silva Fennica vol. 38 no. 3 article id 416. https://doi.org/10.14214/sf.416
Keywords: Pinus radiata; harvesting; compaction; tree growth; litter removal
Abstract | View details | Full text in PDF | Author Info
The effect of soil disturbance (litter removal, topsoil removal and compaction) from forest harvesting on the productivity, log product yields and economic potential of second-rotation Pinus radiata growing on a clay loam soil, was assessed in a long-term trial 21 years after planting. The results are projected forward to the expected harvest age of 28 years. Relative to control plots, average tree volume at 21 years was reduced by 8% in the plots where the litter had been removed and the topsoil had been compacted, and by up to 42% in the plots where the topsoil had been removed and the subsoil compacted. The “degree of compaction” did not have a significant effect on average tree volume in the plots where litter had been removed but did have a significant effect where the topsoil had been removed. Per tree economic potential was reduced to a greater extent (up to 60% loss in value) than average tree volume was reduced. This was largely due to changes in log product yield distribution. Projecting tree growth forward to the end of the rotation at age 28 indicated that the impacts of soil disturbance on tree growth, economic potential and log product yields are likely to be similar in relative terms to those found at age 21.
  • Murphy, Forest Engineering Department, Oregon State University, Corvallis, OR 97331, USA E-mail: glen.murphy@orst.edu (email)
  • Firth, Forest Research, Sala Street, Rotorua, New Zealand E-mail: jgf@nn.nz
  • Skinner, Forest Research, Sala Street, Rotorua, New Zealand E-mail: mfs@nn.nz

Category : Research note

article id 148, category Research note
Ola Lindroos, Magnus Matisons, Petter Johansson, Tomas Nordfjell. (2010). Productivity of a prototype truck-mounted logging residue bundler and a road-side bundling system. Silva Fennica vol. 44 no. 3 article id 148. https://doi.org/10.14214/sf.148
Keywords: bioenergy; compaction; composite residue logs; densification; road-side landing; slash; supply chain
Abstract | View details | Full text in PDF | Author Info
When recovering logging residues (LR) for bioenergy its density should be increased before road transport, otherwise a low proportion of the trucks’ load capacity will be used. One way this can be currently done is to compress LR into bundles that are forwarded to roadside landing. A less well-developed alternative is to forward loose LR and bundle it at landing. In the presented study, a prototype specifically developed for road-side bundling was found to produce larger, heavier bundles than bundling machinery intended for in-field use (mean length, diameter and raw bulk density 4.7 m, 0.8 m and 285 kg m–3, respectively, with 299–445 kg oven dry matter per bundle). The machine was also at least 30% more productive than previously described in-field bundling systems, producing 14–19 bundles per productive work hour (PWh), equivalent to 5.2–7.8 oven-dry tonnes PWh–1. Bundles were estimated to use 67–86% of an LR truck’s 30 tonnes load capacity, similar to proportions used when transporting loose LR. However, a continuous feeding and compressing process would probably almost double productivity, while longer bundles would enable full use of truck load capacity. With such improvements bundling at road-side could provide a viable alternative to current LR-recovering systems.
  • Lindroos, Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden E-mail: ola.lindroos@srh.slu.se (email)
  • Matisons, Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden E-mail: mm@nn.se
  • Johansson, Sveaskog Förvaltnings AB, Vindeln, Sweden E-mail: pj@nn.se
  • Nordfjell, Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden E-mail: tn@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles