Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Antti Asikainen

Category : Research article

article id 9902, category Research article
Perttu Anttila, Vesa Nivala, Olli Salminen, Markus Hurskainen, Janne Kärki, Tomi J. Lindroos, Antti Asikainen. (2018). Regional balance of forest chip supply and demand in Finland in 2030. Silva Fennica vol. 52 no. 2 article id 9902. https://doi.org/10.14214/sf.9902
Keywords: bioenergy; energy wood; GIS; availability; potential
Highlights: The impact of increasing forest chip demand in 2030 was analyzed in Finland; Demand of small trees may exceed potential at the national level; Surplus potential will remain in logging residues and stumps; Hot spots of demand call for efficient logistical solutions.
Abstract | Full text in HTML | Full text in PDF | Author Info

According to the National Energy and Climate Strategy of Finland in 2016, the demand for forest chips, that is, wood chips made of forest biomass directly for energy use, could even double by 2030 compared to the present situation. A spatially explicit impact analysis of regional supply and demand balances for forest chips was carried out. The balances were calculated as the difference between technical harvesting potentials and demand. First, the technical potentials were estimated based on the national forest inventory data. Secondly, three demand scenarios were defined for 2030 and subsequently deducted from the potentials. The results suggested that there would be increasing competition for feedstock in southern and western Finland, whereas in eastern and northern Finland there would still be surplus potential. Moreover, due to the remarkable deficit of small trees in southern Finland, there might be pressure towards using more pulpwood-sized and/or imported wood in energy production. The results also showed that, in particular, large new plants consuming substantial amounts of forest chips could have a significant effect on the regional availability of forest chips. Moreover, with increasing transport distances, new logistical solutions will be needed.

  • Anttila, Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland ORCID http://orcid.org/0000-0002-6131-392X E-mail: perttu.anttila@luke.fi (email)
  • Nivala, Natural Resources Institute Finland (Luke), Eteläranta 55, FI-96300 Rovaniemi, Finland E-mail: vesa.nivala@luke.fi
  • Salminen, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: olli.salminen@luke.fi
  • Hurskainen, VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, FI-40400 Jyväskylä, Finland E-mail: markus.hurskainen@vtt.fi
  • Kärki, VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, FI-40400 Jyväskylä, Finland E-mail: janne.karki@vtt.fi
  • Lindroos, VTT Technical Research Centre of Finland Ltd, Vuorimiehentie 3 (Espoo), P.O. Box 1000, FI-02044 VTT, Finland E-mail: tomi.j.lindroos@vtt.fi
  • Asikainen, Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: antti.asikainen@luke.fi
article id 1689, category Research article
Juha Laitila, Eeva Lehtonen, Tapio Ranta, Perttu Anttila, Saija Rasi, Antti Asikainen. (2016). Procurement costs of cereal straw and forest chips for biorefining in South-East Finland. Silva Fennica vol. 50 no. 5 article id 1689. https://doi.org/10.14214/sf.1689
Keywords: supply chains; stumps; young stands; logging residues; delimbed stems; agrobiomass
Highlights: Procurement cost at the plant was 59 € dry tonne –1 when the annual procurement volume of biomass was 100 000 tonnes. Of that amount, the proportion of logging residues was 58.4%, stumps 24.3% and delimbed stems 17.3%; Cereal straw represents an important source of biomass in Kouvola but the cost competiveness is poor compared the procurement costs of forest chips due to high baling and transporting costs.
Abstract | Full text in HTML | Full text in PDF | Author Info

In Finland the increasing use of biofuel in transport presupposes a search for new raw material sources for biorefining. The aim of this study was, at the regional level, to compare the procurement costs of logging residues, stumps, delimbed stems and cereal straw for biorefining. The accumulation and procurement costs of forest chips and cereal straw were estimated within a 100-kilometre transporting distance via existing road network from an end-use-facility located in Kouvola in South-East Finland. The analyses were performed as simulated treatments in thinnings of young stands, cereal fields and regeneration fellings using existing productivity and cost functions and yield calculations based on crop statistics, the forest industry stand data and the sample plots data of the National Forest Inventory of Finland. Accumulation of raw material assortments and costs of production stages were defined per dry tonnes. Subsidies and raw material prices were excluded from consideration in the study. The results indicate that recovering logging residues requires lower costs than utilization of stumps, delimbed stems or cereal straw. Cereal straw represents an important source of biomass in Kouvola but the cost competiveness is poor compared the procurement costs of forest chips. When the annual procurement volume of biomass was 50 000 dry tonnes the cost at the plant was 49 € dry tonne –1 and biomass was comprised totally of logging residues. Procurement cost grew to 59 € dry tonne –1 when the annual procurement volume of biomass was doubled to 100 000 dry tonnes. Of that amount, the proportion of logging residues was 58.4%, stumps 24.3% and delimbed stems 17.3%. First cereal straw dry tonnes were delivered to end-use-facility, when procurement cost grew to 60 € dry tonne –1 and annual procurement volume of biomass was 110 000 dry tonnes.

  • Laitila, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juha.laitila@luke.fi (email)
  • Lehtonen, Natural Resources Institute Finland (Luke), Green Technology, Halolantie 31A, FI-71750 Maaninka, Finland E-mail: eeva.lehtonen@luke.fi
  • Ranta, Lappeenranta University of Technology, LUT School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland E-mail: tapio.ranta@luke.fi
  • Anttila, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: perttu.anttila@luke.fi
  • Rasi, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, Survontie 9A, FI-40500 Jyväskylä E-mail: saija.rasi@luke.fi
  • Asikainen, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: antti.asikainen@luke.fi
article id 1280, category Research article
Juha Laitila, Tapio Ranta, Antti Asikainen, Eero Jäppinen, Olli-Jussi Korpinen. (2015). The cost competitiveness of conifer stumps in the procurement of forest chips for fuel in Southern and Northern Finland. Silva Fennica vol. 49 no. 2 article id 1280. https://doi.org/10.14214/sf.1280
Keywords: stumps; quality; delimbed stems; pre-grinding; procurement; heating value
Highlights: Pre-grinding and integrated screening is a way of guaranteeing fuel quality, but, when the stumps’ ash content is six per cent or below, the procurement costs are higher than with grinding of stumps at the plant. Because of high transportation costs, stump harvesting is the most profitable in Southern Finland, where there is greater availability of stumps than in Northern Finland.
Abstract | Full text in HTML | Full text in PDF | Author Info
The aim of this study was to evaluate cost competitiveness, at regional level, of various systems for stump transportation and grinding, and to compare the results to the procurement costs of delimbed stems from early thinnings at the stand and regional level. The accumulation and procurement costs of stumps and delimbed stems were estimated within a 100-kilometer radius from two power plants located in Kouvola and in Kajaani. The analyses were performed as simulated treatments in clear cuts and thinnings of young stands, using existing productivity and cost functions, alternative ash percentages for stump wood, and yield calculations based on the forest industry regeneration felling stand data and the sample plots data of the National Forest Inventory of Finland. The results were expressed as Euros per solid cubic meter (€ m–3) and Euros per megawatt hour (€ MWh–1). The results highlight the need to improve stump fuel quality and increase the heating value. The procurement cost of stumps was about 1 € MWh–1 lower in Kouvola compared to Kajaani, when using conceivable ash content of 6% for stumps ground at the plant, and ash content of 1.5% for stumps pre-ground at the roadside landing. The procurement costs of stumps were, on average, 0.55 € MWh–1 lower compared to delimbed stems in Kouvola, and on average 0.6 € MWh–1 higher in Kajaani. Pre-grinding and integrated screening is a feasible way to guarantee the fuel quality expressed as ash content already at roadside landings, but the procurement costs are higher compared to grinding stumps at the plant, when the ash content of ground stumps is 6% or less.
  • Laitila, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juha.laitila@metla.fi (email)
  • Ranta, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland E-mail: tapio.ranta@lut.fi
  • Asikainen, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: antti.asikainen@metla.fi
  • Jäppinen, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland E-mail: eero.jappinen@lut.fi
  • Korpinen, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland E-mail: olli-jussi.korpinen@lut.fi
article id 49, category Research article
Kalle Karttunen, Kari Väätäinen, Antti Asikainen, Tapio Ranta. (2012). The operational efficiency of waterway transport of forest chips on Finland’s Lake Saimaa. Silva Fennica vol. 46 no. 3 article id 49. https://doi.org/10.14214/sf.49
Keywords: barges; discrete-event simulation; forest fuels; logistics; supply chains; tugboats
Abstract | View details | Full text in PDF | Author Info
New and cost-efficient methods for use in supply chains for energy wood should be found, to reach the targets of the renewable energy utilisation set by the European Union. The long-distance waterway transportation of forest fuels should be thoroughly investigated, especially in areas where the transport distance is long and waterways could provide a feasible method of conveying forest fuel. In comparison to transport of forest chips by truck, barge-based waterway transport shows a competitive advantage due to the larger loads and higher bulk density of chips it allows. The cost-efficiency of waterway transportation operations related to forest chips in Finland’s Lake Saimaa region was studied using practical demonstrations and discrete-event simulation. The varying demand for fuel wood in three separate bio-power plants on the Saimaa lakeside (near the cities of Varkaus, Mikkeli, and Savonlinna) was addressed in several barge transportation scenarios. Finally, the economy of barge transportation was compared to the economy of truck transportation as a function of transportation distance and in terms of the annual performance of the transportation methods examined. The waterway supply chain of forest chips was cost-competitive to road transport by truck after 100–150 km. According to the simulation study, the most economical waterway transport options were based on fixed barge system and shift-independent harbor logistics where loading and unloading of barges were carried-out with a wheeled loader and a belt conveyor. Total supply chain costs including the best waterway logistics from road side storage to power plant ranged from 10.75 euros to 11.64 euros/MWh in distances of 100–150 km by waterways. The energy-density of forest chips in the barge load was found to be, on average, 25% higher than that in truck hauling, because of the better compaction of chips. Waterway transport is a viable option for long-distance transportation of forest chips in Eastern Finland.
  • Karttunen, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Mikkeli, Finland E-mail: kalle.karttunen@lut.fi (email)
  • Väätäinen, The Finnish Forest Research Institute, Joensuu, Finland E-mail: kari.vaatainen@metla.fi
  • Asikainen, The Finnish Forest Research Institute, Joensuu, Finland E-mail: antti.asikainen@metla.fi
  • Ranta, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Mikkeli, Finland E-mail: tapio.ranta@lut.fi
article id 165, category Research article
Yrjö Nuutinen, Kari Väätäinen, Antti Asikainen, Robert Prinz, Jaakko Heinonen. (2010). Operational efficiency and damage to sawlogs by feed rollers of the harvester head. Silva Fennica vol. 44 no. 1 article id 165. https://doi.org/10.14214/sf.165
Keywords: productivity; single grip harvester; feed roller; timber damages; work study
Abstract | View details | Full text in PDF | Author Info
In mechanical cutting, deep damage caused by feed rollers can reduce the yield of good quality timber for the sawmill and plywood industries. Additionally the feeding and energy efficiency of feed rollers are important for the profitability of harvester cutting. The objectives of this study were to compare the damages to sawlogs, as well as the time and fuel consumption of stem feeding with six different steel feed rollers during the processing of stems using a single grip harvester. This study tested two rollers with big spikes, two rollers with small spikes, one roller with studs in v-angle and one roller with adaptable steel plates in the ring of the roller. A highly detailed, and accurate processing and fuel consumption projection was recorded using the harvester’s automated data collector on a log and stem level. The roller adaptable plate averaged, for unbarked sawlogs, the lowest damages of 3.7 mm. While the damages of the roller with big spikes were the deepest with an average of 7.8 mm. For medium stems, volume of 0.35 m3, the range of differences between the maximum and minimum effective feeding time per roller was 6–19%, which would increase the effective time consumption of cutting by 1–3%. Corresponding differences in fuel consumption during total stem processing were in the range of 7–15%. According to this study it can be concluded that the traditional rollers with spikes were most effective in processing and fuel consumption, but at the same time they caused the deepest damages to the sawlogs. The roller type with adaptable steel plates was the most effective for small stems, additionally it also caused the least damage to the sawlogs.
  • Nuutinen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: yrjo.nuutinen@metla.fi (email)
  • Väätäinen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: kv@nn.fi
  • Asikainen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: aa@nn.fi
  • Prinz, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: rp@nn.fi
  • Heinonen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: jh@nn.fi
article id 264, category Research article
Yrjö Nuutinen, Kari Väätäinen, Jaakko Heinonen, Antti Asikainen, Dominik Röser. (2008). The accuracy of manually recorded time study data for harvester operation shown via simulator screen. Silva Fennica vol. 42 no. 1 article id 264. https://doi.org/10.14214/sf.264
Keywords: accuracy of timing; mixed effects models; time studies
Abstract | View details | Full text in PDF | Author Info
The aim of the study was to investigate the effect of work experience on the accuracy and variation of observers recording the operation time of a harvester. A simulated thinning operation using a harvester, shown as video via a television screen in laboratory conditions, was observed by 20 inexperienced students and 10 experienced work study researchers. All the observers timed the different work elements of the harvester work with special fieldwork timers. The duration of different work elements measured by the human observers were compared to the corresponding recordings by the harvester’s automated data collector. Although the inexperienced students made more measurement mistakes than the experienced researchers, the differences in measurement error averages were not statistically significant between the groups. However, the variances of tree specific errors were significantly higher in the measurements done by the students. As inexperienced recorders, the students were not able to properly record short work elements, which lasted a maximum of 4 seconds. Due to systematic measurement errors, there was a large variation in the timing structures of the work elements among all observers. Observers’ skills and experience seems to affect measurement accuracy and thus the derived results, especially in intensive time studies. Therefore, the recorder should receive detailed training and practical experience in timing of different work elements of forest operations. In the future, with the use of automated data collectors time studies with large, detailed and accurate data will be implemented. However, due to the varying timing conditions in the forest, manual data collection is still required because of its greater flexibility.
  • Nuutinen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: yrjo.nuutinen@metla.fi (email)
  • Väätäinen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: kv@nn.fi
  • Heinonen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: jh@nn.fi
  • Asikainen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: aa@nn.fi
  • Röser, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: dr@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles