Comparisons were made between artificially and naturally regenerated stands in the south-eastern part of North Karelia, Finland, and naturally regenerated stands in the western parts of the Republic of Karelia, Russian Federation. The effect of soil fertility and silvicultural operations on the stand structure was also investigated.
The results of the study show clearly that when forests are artificially regenerated the stand structure includes less variation when compared with the stands naturally regenerated. Differences between the regeneration methods are clearer the more fertile the forest site is. Within the regeneration method there is also a clear trend in stand structure, with the variation decreasing the poorer the site. The effect of silvicultural operations, i.e. the cleaning of the sapling stand, has disappeared by the time of first thinning, although it appears to have a permanent effect on the dynamics of the tree species within a stand.
The variation of the stand structure can be regarded as an essential factor for the potential biodiversity of the stand also at its young vegetation succession stage. This capacity for maintaining the forest biodiversity, developed at the young vegetation succession stage, becomes increasingly important in subsequent vegetation succession stages. Natural regeneration provides improved possibilities for the operations preserving forest biodiversity, as it generates more dense stands with a wider variation in stand structure, compared to artificial regeneration.
The aim of the study was to compare the behaviour of three selected provenances of Eucalyptus microtheca F. Muell. that were likely to respond differently to drought. For this purpose, we studied the effects of vapour pressure deficit and soil water content on leaf water potential in an irrigated plantation in Bura, eastern Kenya.
An international provenance trial of Eucalyptus microtheca, established as a part of Finnida-supported Bura Forestry Research Project in eastern Kenya in 1984 was used as a plant material in the study. The eastern provenance showed generally the lowest leaf water potential on a daily basis. Statistically significant differences in the daily leaf water potential fluctuations were detected. The eastern provenance exhibited the greatest and the northern one the smallest values. The minimum daily leaf water potential of the provenances responded well to changes in gravimetric soil water content, the western provenance being the most sensitive one. The relationship of the observed results and annual rainfall distribution in the geographic regions of the studied provenances is discussed.
The matric potential and unsaturated hydraulic conductivity of peat-based growth media in containers was measured continuously as a function of drying. The particle size distribution and the water retention characteristics of the media were determined from parallel samples. The growth media used were a light, coarse graded Sphagnum peat, a medium graded Sphagnum peat and a mixture of a perlite and the medium graded Sphagnum peat. Containers of two types were packed with the media and allowed to evaporate from saturation. Matric potential was measured automatically using tensiometers during drying.
In both container types, the matric potential of the media was similar down to 10 kPa at each of the three levels measured during drying. Further drying resulted in a large matric potential gradient between the upper and the middle levels. During drying, there was also clear shrinkage of the media. When the matric potential at the upper level reached ca. -80 kPa, the decrease in height of the media was 5–23 %. The estimated hydraulic conductivity of the media during drying was rather similar. The hydraulic conductivity of the peat-perlite mixture was, however, slightly lower than that of the pure peat media. The hydraulic conductivity decreased linearly on a log-log-scale from ca. 10-5 to less than 10-10 m/s as the matric potential decreased from -3 to -60 kPa. The hydraulic conductivity of the media was comparable to coarse sand at matric potentials below -10 kPa. The decrease in hydraulic conductivity during drying and the possible weakening of soil-root contact due to shrinkage may considerably affect the availability of water to plants.
The PDF includes an abstract in Finnish.
A measurement system developed for the parallel and real-time measurement of temperature, matric potential and oxygen diffusion rate (ODR) of a growth medium was assessed. The system consisted of a portable computer, a datalogger, temperature sensors, tensiometers and an ODR-meter with Pt-sensors.
For the measurements, proper sensor contact with the growth medium was needed. For matric potential measurement, appropriate shape and material of the tensiometer tips should be selected for different measurement purposes. The determination of oxygen diffusion rate is based on single, non-continuous measurements. The ODR-measurement required special care with the insertion and handling of the electrodes and selection of applied voltage. The ODR-measurement of a coarse peat medium was applicable only at matric potentials > -5 kPa. This measurement system was shown to be useful and suitable for accurate determination of thermal-, water- and aeration conditions of a growth medium under greenhouse conditions.
The PDF includes an abstract in Finnish.
The matrix potential, measured with tensiometers, and its effect on the soil air-water ratio were examined during the production of bare-rooted Scots pine (Pinus sylvestris L.) seedlings in nursery fields. Soil water potential was monitored during the growing season of 1983 at three nurseries in Finland, and from fields growing various seedling types at depths of 10 and 20 cm. In 1986, soil core samples were collected in order to assess the water desorption characteristics of the soil. In addition, the effect of polypropylene gauze covering (Agryl P 17) on the soil water potential was examined during the growing season of 1985 at two nurseries in Finland at depths of 5, 10 and 15 cm.
The soil water potential was relatively high in all the fields studied. In fields growing one- and two-year-old seedlings, the median potential was higher than -10 kPa. The potential did not fall below the limit of the measured scale (ca. -85 kPa) of the tensiometers. Soil aeriation may have been periodically insufficient in the rooting zone, as a result of high water content. The favourable water potential is below -5 to – 6 kPa. The gauze covering slightly (1–4 kPa) increased the soil water potential, an effect which could be harmful if the soil air space is low. During the second growing season, the soil water potential was lower in the fields covered by the gauze during the first year than in the fields without the covering.
The PDF includes an abstract in English.
Five ploughed research areas from Finnish Norther Karelia were selected for comparison studies of plough ridges and untouched soil. Measurements were made at a depth of 10 cm in sample plots on both mineral and paludified mineral soil and peatland parts of these areas. In summer 1987 daily soil water matric potential was measured using tensiometers, and volumetric soil moisture content and density were determined from soil samples at two dates during the summer. Water characteristics of the core samples were also determined. On paludified mineral and peat soils the water table depth from the soil surface was measured.
The results indicated that in plough ridges matric potential was lowest. Plough ridges were also seen to dry and wet faster and to a greater degree than untouched soils. In untouched soils, soil water relations and aeration were not affected by the distance to the furrow. The effect of the plough ridge was smallest on peatland, where there was a good capillary connection from plough ridge to the ground water, if the ditches were not very effective. The soil in the ridges did not dry too much to restrict seedling growth. The untouched surface soil in poorly drained peat and paludified minear soil was, at least in a rainy growing season, often and also for long times so wet that 10% minimum air space required for good seedling root growth was not available.
The PDF includes an abstract in English.
An empirical analysis of the Finnish non-industrial private forest owners indicates that forestry extension has an effect on the supply of timber and the use of cutting potentials. This effect appears to be indirect rather than direct. The use of extension services is likely to increase the frequency of timber sales, which in turn, increases the use of the allowable cut via increased volume of actual cuttings. Forestry extension can also be considered as an intermediate variable through which certain background conditions and owner characteristics affect the use of cutting potential.
In Southern Finland Scots pine (Pinus sylvestris L.) is mainly sown on Vaccinium and Myrtillus-type sites. The material for the study was collected by measuring sample plots in pure, even-aged pine stand that had been sown. The sample stands had been thinned from below.
The volume of the stands was roughly the same as that of repeatedly thinned pine stands. The cubic volume of sown pine stands is 65–90%, varying according to age, of that of natural-normal pine stands. The current annual volume increment of stands on Myrtillus-type was 8–9 m3/ha at age of 20–30 years. The peak was reached at age of 35 years with 9 m3/ha, in the following years the increment is about 8 m3/ha until the age of 60 years. On Vaccinium type sites increment reaches 6–7 m3 level at age of 30 years, and attains the peak of 7 m3/ha at the age of 45 years. Annual increment was in young and middle-aged Myrtillus-type stands about 10% greater, and on Vaccinium-type stands 15–20% greater than in natural-normal pine stands.
The total volume increment in 70 years old Myrtillus-type stands was 580 m3/ha over bark, and in 80 years old Vaccinium-type stands 520 m3/ha. The total removal on Myrtillus-type sites totalled nearly 350 m3/ha in sown pine stands up to 70 years of age, and 280 m3/ha on Vaccinium-type stands. The total yield in sawn timber per hectare rises up to 6,300 cubic ft in a 70 years old stand on Myrtillus-type stands, and 5,300 cubic ft in Vaccinium-type stands. In conclusion, the volume and increment development of managed pine stands established by sowing up to 70–80 years of age is largely the same as in repeatedly thinned pine stands, but the structure and yield offer greater advantages. The investigation demonstrates that, in the case of Scots pine, sowing is an advantageous method of regeneration. Sowing is an advantage especially in the cases where natural regeneration is uncertain and slow.
The PDF includes a summary in English.
In the study, the potential allowable cut in the district of North-Savo, Eastern Finland was clarified based on the non-industrial private forest landowners’ (NIPF) choices of timber management strategies. Alternative timber management strategies were generated, and the choices and factors affecting the choices of timber management strategies by NIPF landowners were studied. The choices of timber management strategies were solved by maximizing the utility functions of the NIPF landowners. The parameters of the utility functions were estimated using the Analytic Hierarchy Process (AHP).
The level of the potential allowable cut was compared to the cutting budgets based on the 7th and 8th National Forest Inventories (NFI7, NFI8) in Finland, to the combining of private forestry plans, and to the realized drain from non-industrial private forests. The potential allowable cut was calculated using the MELA system that has been used in calculating the national cutting budget.
The data consisted of the NIPF holdings that had been inventoried compartmentwise and had forestry plans made in 1984–92. The NIPF landowners’ choices of timber management strategies were clarified by a mail inquiry.
The most preferred strategy obtained was ”sustainability” (chosen by 62% of landowners). The second was ”finance” (17%) and the third ”savings” (11%). ”No cuttings”, and ”maximum cuttings” were the least preferred (9% and 1%, resp.). The factors promoting the choices of strategies with intensive cuttings were: a) ”farmer as forest owner” and ”owing fields”, b) ”increase in the size of the forest holding”, c) agriculture and forestry orientation in production, d) ”decreasing short-term stumpage earnings expectations”, e) ”increasing intensity of future cuttings”, and f) ”choice of forest taxation system based on site productivity”.
The potential allowable cut defined in the study was 20% higher than the average of the realized drain in 1988–93, which was at the same level as the cutting budget based on the combining of forestry plans in Eastern Finland. The potential allowable cut defined in the study was 12% lower than the NFI8-based greatest sustained allowable cut for the 1990. Using the method, timber management strategies can be clarified for private forest owners.
The investigation examines the development potential of small sawmills in rural Finland. Development is defined with qualitative bias, given small sawmills’ limited possibilities for large-scale investments. Potential is defined in terms of the behavioural limitations to development. The investigation assumes that small sawmill entrepreneurial behaviour is essentially satisficing, and that the concept of bounded rationality is applicable. The empirical material concerns a random sample of 399 sawmills from all regions in Finland collected in connection with the 1990 small sawmill inventory.
Three sets of enterprise/entrepreneurial attributes are constructed using principal component analyses: i) entrepreneurial skills & organization, ii) small sawmill outlets, and iii) information attributes. Development potential is measured by employing discriminant analyses to test these attributes against four a priori sawmill classifications: i) sawmill production structure, ii) entrepreneurial development intentions, ii) sawmill operating environments, and iv) sawmilling as a livelihood. Each of these analyses contributes to an understanding of the entrepreneur-enterprise dialectic.
Based on the use of Pred’s behavioural matrix, small sawmill entrepreneurs’ quantity & quality of information and their ability to use information are examined with respect to sawmill typologies. In this way, the entrepreneur-enterprise dialectic is given a third dimension, that of the entrepreneurs’ partial space. The analysis is therefore able to examine development potential from the standpoint of an entrepreneur-enterprise-environment (partial space) trialectic.
The PDF includes a summary in Finnish.
According to the National Energy and Climate Strategy of Finland in 2016, the demand for forest chips, that is, wood chips made of forest biomass directly for energy use, could even double by 2030 compared to the present situation. A spatially explicit impact analysis of regional supply and demand balances for forest chips was carried out. The balances were calculated as the difference between technical harvesting potentials and demand. First, the technical potentials were estimated based on the national forest inventory data. Secondly, three demand scenarios were defined for 2030 and subsequently deducted from the potentials. The results suggested that there would be increasing competition for feedstock in southern and western Finland, whereas in eastern and northern Finland there would still be surplus potential. Moreover, due to the remarkable deficit of small trees in southern Finland, there might be pressure towards using more pulpwood-sized and/or imported wood in energy production. The results also showed that, in particular, large new plants consuming substantial amounts of forest chips could have a significant effect on the regional availability of forest chips. Moreover, with increasing transport distances, new logistical solutions will be needed.
The impacts of weed control, ash fertilization and their interaction were tested for the afforestation of former agricultural peat-based soil with Scots pine (Pinus sylvestris L.) in northern Finland in a factorial arrangement of four treatments. Weed control with herbicides was carried out in July 1 and 2 years from planting, and wood ash (5 Mg ha–1) was applied in the spring of the 2nd year. Various vegetation, tree growth and nutrient assessments were made over the 21-year study period. Weed control decreased the weed cover by 36–56 percentage points, vegetation height by 4–26 cm and thus shading of seedlings by vegetation for at least 4 years after planting. For the same period, ash fertilization increased vegetation height by 6–15 cm and shading of seedlings. Weed control reduced seedling mortality by 27 percentage points in 21 years, but ash fertilization had no significant effect. Ash fertilization increased foliar potassium and boron concentrations, but its effect declined, and severe K-deficiency was recorded 21 years after planting. Up to the 9th year, weed control had a greater influence on growth than fertilization. Later the significance of fertilization increased due to an aggravated K-deficiency. Stand volume at year 21 for the untreated control plots was 8 m3 ha–1. Weed control and fertilization increased stand volume by 20 and 35 m3 ha–1, with a combined effect of 55 m3 ha–1. The effects of weed control and fertilization were additive and no significant interactions were found. Due to severe K-deficiencies, re-fertilization of all treatments would be necessary for the continued survival and growth of Scots pine.
Forestry in Malå, northern Sweden, coexists with other land uses. Reindeer husbandry is in the area for centuries and requires large areas of grazing land. Competing land uses may threaten the Malå Sami village. The aim of the study was to evaluate increased consideration in forest management towards 1) reindeer husbandry, 2) nature and 3) a combination of the two. These scenarios were compared with forest management as it was in 2009. Results indicate that all three scenarios lead to a decrease in annual harvesting volumes of 0.2 to 0.4 million m3. Forest industry dominated the economic viability in the area. Forest management adapted to the needs of reindeer husbandry resulted in less potential for yearly harvest, employment and profits from forest industry. On the other hand, it led to an increase in growing stock and consequently the potential for carbon sequestration over time. Indeed the increased sequestration would compensate for all fossil emissions of carbon from the Forest Wood Chain (FWC). The nature scenario had minor effects on economic result and on the emissions of fossil carbon. The combined scenario gave a reduced economic performance for the FWC. A scenario based on forest management accommodating the needs of reindeer husbandry gave the best economic result for the reindeer chain, due to high survival rate of the reindeer. However the economic importance of reindeer husbandry in the region was small compared to the FWC. Results from scenario analysis could serve as a platform for mutual understanding between stakeholders.
Understanding the characteristics of unutilized biomass resources, such as small-diameter trees from biomass-dense thinning forests (BDTF) (non-commercially-thinned forests), can provide important information for developing a bio-based economy. The aim of this study was to describe the areal distribution, characteristics (biomass of growing stock, tree height, etc.) and harvesting potential of BDTF in Sweden. A national forest inventory plot dataset was imported into a geographical information system and plots containing BDTF were selected by applying increasingly stringent constraints. Results show that, depending on the constraints applied, BDTF covers 9–44% (2.1–9.8 M ha) of the productive forest land area, and contains 7–34% of the total growing stock (119–564 M OD t), with an average biomass density of 57 OD t ha–1. Of the total BDTF area, 65% is located in northern Sweden and 2% corresponds to set-aside farmlands. Comparisons with a study from 2008 indicate that BDTF area has increased by at least 4% (about 102 000 ha), in line with general trends for Sweden and Europe. Analyses revealed that the technical harvesting potential of delimbed stemwood (over bark, including tops) from BDTF ranges from 3.0 to 6.1 M OD t yr–1 (7.5 to 15.1 M m3 yr–1), while the potential of whole-tree harvesting ranges from 4.3 to 8.7 M OD t yr–1 (10.2 to 20.6 M m3 yr–1) depending on the scenario considered. However, further technological developments of the harvest and supply systems are needed to utilize the full potential of BDTF.