Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'Fagus'

Category : Article

article id 7224, category Article
C. H. Bornebusch. (1929). Danmarks skovtyper. Acta Forestalia Fennica vol. 34 no. 11 article id 7224. https://doi.org/10.14214/aff.7224
English title: Forest types in Denmark.
Keywords: beech; ground vegetation; Denmark; forest types; Fraxinus exelsior; ash; Fagus
Abstract | View details | Full text in PDF | Author Info

The paper describes plant species characteristic for ash (Fraxinus exelsior L.) forests in Denmark, and compares the vegetation to beech (Fagus ssp.) forests, the dominating tree species in Danish forests, which have notably simpler ground vegetation. The writer concludes that ground vegetation can be divided into distinct types. Beech grows in several types of soil differing in their fertility (bonitet). The writer has divided the different soil types by their flora (tilstandstyper). The flora is influenced by three factors: climate, fertility of the soil and soil moisture. The paper defines the types of vegetation which describe fertility of the sites (bonitet), and discusses how age, silvicultural condition and tree species affect the vegetation.

  • Bornebusch, E-mail: cb@mm.unknown (email)

Category : Research article

article id 7748, category Research article
Dominik Bayer, Hans Pretzsch. (2017). Reactions to gap emergence: Norway spruce increases growth while European beech features horizontal space occupation – evidence by repeated 3D TLS measurements. Silva Fennica vol. 51 no. 5 article id 7748. https://doi.org/10.14214/sf.7748
Keywords: Picea abies; gap dynamics; Fagus sylvatica; crown expansion; crown allometry; TLS; growing area competition; growing space efficiency
Highlights: Analysis of the closure dynamics of a Norway spruce, a European beech and a mixed forest gap by repeated TLS measurements; Norway spruce allocated additional resources predominantly into DBH growth and displayed stronger resilience against mechanical crown damage; European beech allocated resources towards space occupation and displayed higher crown plasticity; Species mixture had no significant effect.
Abstract | Full text in HTML | Full text in PDF | Author Info

The reach of different tree species’ crowns and the velocity of gap closure during the occupation of canopy gaps resulting from mortality and thinning during stand development determine species-specific competition and productivity within forest stands. However, classical dendrometric methods are rather inaccurate or even incapable of time- and cost-effectively measuring 3D tree structure, crown dynamics and space occupation non-destructively. Therefore, we applied terrestrial laser scanning (TLS) in order to measure the structural dynamics at tree and stand level from gap cutting in 2006 until 2012 in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.). In conclusion, our results suggest that Norway spruce invests newly available above-ground resources primarily into DBH as well as biomass growth and indicate a stronger resilience against loss of crown mass induced by mechanical damage. European beech showed a vastly different reaction, investing gains from additional above-ground resources primarily into faster occupation of canopy space. Whether our sample trees were located in pure or mixed groups around the gaps had no significant impact on their behavior during the years after gap cutting.

  • Bayer, Address Technical University of Munich (TUM), Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany ORCID http://orcid.org/0000-0002-2084-3019 E-mail: dominik.bayer@lrz.tu-muenchen.de (email)
  • Pretzsch, Address Technical University of Munich (TUM), Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany E-mail: hans.pretzsch@lrz.tu-muenchen.de
article id 1740, category Research article
Ram P. Sharma, Zdeněk Vacek, Stanislav Vacek. (2017). Modelling tree crown-to-bole diameter ratio for Norway spruce and European beech. Silva Fennica vol. 51 no. 5 article id 1740. https://doi.org/10.14214/sf.1740
Keywords: Picea abies; Fagus sylvatica; dominant height; exponential decay function; mixed effect model; spatially explicit competition index; species proportion; species mixture effect
Highlights: Modelled crown-to-bole diameter ratio (CDBDR) using tree and stand-level predictors, and sample plot random effects; Spatially explicit mixed-effects model described the largest part of CDBDR variation with no significant trend in the residuals; The CDBDR increased with increasing stand development stage and site quality, but decreased with decreasing proportion of the species of interest, and increasing competition.
Abstract | Full text in HTML | Full text in PDF | Author Info

Crown dimensions are correlated to growth of other parts of a tree and often used as predictors in growth models. The crown-to-bole diameter ratio (CDBDR), which is a ratio of maximum crown width to diameter at breast height (DBH), was modelled using data from permanent sample plots located on Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) stands in different parts of the Czech Republic. Among various tree and stand-level measures evaluated, DBH, height to crown base (HCB), dominant height (HDOM), basal area of trees larger in diameter than a subject tree (BAL), basal area proportion of the species of interest (BAPOR), and Hegyi’s competition index (CI) were found to be significant predictors in the CDBDR model. Random effects were included using the mixed-effects modelling to describe sample plot-level variation. For each species, the mixed-effects model described a larger part of the variation of the CDBDR than nonlinear ordinary least squares model with no trend in the residuals. The spatially explicit mixed-effects model showed more attractive fit statistics [conditional R2 ≈ 0.73 (spruce), 0.78 (beech)] than its spatially inexplicit counterpart [conditional R2 ≈ 0.71 (spruce), 0.76 (beech)]. The model showed that CDBDR increased with increasing HDOM – a measure that combines the stand development stage and site quality – but decreased with increasing HCB and competition (increasing BAL and CI), and decreasing proportions of the species of interest (increasing BAPOR). For both species, the spatially explicit mixed-effects model should be a preferred choice for a precise prediction of the CDBDR. The CDBDR model will have various management implications such as determination of spacing, stand basal area, stocking, and planning of appropriate species mixture.

  • Sharma, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: sharmar@fld.czu.cz (email)
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekz@fld.czu.cz
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekstanislav@fld.czu.cz
article id 1520, category Research article
Tomáš Kolář, Kyriaki Giagli, Miroslav Trnka, Emílie Bednářová, Hanuš Vavrčík, Michal Rybníček. (2016). Response of the leaf phenology and tree-ring width of European beech to climate variability. Silva Fennica vol. 50 no. 2 article id 1520. https://doi.org/10.14214/sf.1520
Keywords: dendroclimatology; Fagus sylvatica; temperature; soil moisture; radial increment
Highlights: The timing of leaf phenological phases in European beech is controlled by temperature; Tree-ring width variations in European beech positively reflect growing season precipitation and soil water availability; The water availability in the top 40 cm of soil layer is more important for European beech growth than that in the deeper layers; Extension of the phenological growing season does not increase tree-ring width.
Abstract | Full text in HTML | Full text in PDF | Author Info

Various environmental conditions (heat waves and drought events) strongly affect leaf and xylem phenology. Disentangling the influence of temperature, precipitation and soil moisture content (AWR) on the forest productivity remains an important research area. We analyzed the impact of climate variability on the leaf phenology (10 sample trees) and radial growth (17 sample trees) of European beech (Fagus sylvatica L.). The study was conducted on 130-year-old European beech trees growing in a temperate forest stand in the Czech Republic. Detailed 20-year phenological monitoring was performed at the study site (1992–2011). As expected, leaf phenological events were mainly driven by the growing season temperatures. Leaf unfolding was highly affected positively by spring temperatures and the top-layer (to 40 cm) AWR in March. The correlation of tree-ring width with the interpolated climate data was positive significant for the growing season AWR and precipitation signal. Furthermore, the water availability in the top soil layer was found to be an important predictor of tree growth and extremely low growth occurrence. The extended phenological growing season, which was caused by a temperature increase, was not followed by an increased tree-ring width. The examined relationships point out the significance of the water availability in the top soil layer in European beech stands.

  • Kolář, Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic; Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic E-mail: koldatom@gmail.com (email)
  • Giagli, Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic E-mail: giagli@node.mendelu.cz
  • Trnka, Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Agrosystems and Bioclimatology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic E-mail: mirek_trnka@yahoo.com
  • Bednářová, Institute of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědelská 3, 61300 Brno, Czech Republic E-mail: bednarov@mendelu.cz
  • Vavrčík, Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic E-mail: vavrcik@mendelu.cz
  • Rybníček, Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic; Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic E-mail: michalryb@post.cz
article id 260, category Research article
Panagiotis Michopoulos, George Baloutsos, Anastassios Economou. (2008). Nitrogen cycling in a mature mountainous beech forest. Silva Fennica vol. 42 no. 1 article id 260. https://doi.org/10.14214/sf.260
Keywords: bulk deposition; Fagus sylvatica; litterfall; stemflow; stream water; throughfall
Abstract | View details | Full text in PDF | Author Info
The nitrogen cycle in a mature, mountainous European beech (Fagus sylvatica) forest in Greece was examined for two hydrological years, 2001–2002 and 2002–2003. Bulk deposition was 1383 mm in 2001–2002 and 2392 mm in 2002–2003. Winter temperatures were mild in the first year and low in the second year. Despite these climatological differences, the inorganic N inputs to the forest floor, by means of throughfall and stemflow, were quite similar for the two years, i.e. 12.4 and 14.6 kg ha–1 yr–1. Litterfall production was significantly (p < 0.05) higher in the second year but the N amounts in litterfall did not differ. The ratio of N/P in foliar tissue did not change significantly in 2003 compared with ratio values in the last years. The N amounts used for the annual stem and branch increments are rather high preventing, in this way, some nitrogen from being recycled in the near future. The total soil N content to a depth of 80 cm amounted to more than 5000 kg ha–1, and the C/N ratio in the Oh horizon was approximately 15 but the beech forest did not appear susceptible to N leaching. The concentrations of ammonium and nitrate N in stream water did not reach high values reported in the literature, and did not differ significantly in the two hydrological years. The fluxes of inorganic N in throughfall plus stemflow were higher than those in stream water indicating N retention in soil. Another reason for N retention in the ecosystem is probably the large difference between N requirements and uptake indicating N deficiency. Despite the maturity of the beech trees, the low C/N ratio in the Oh horizon and the relatively high N content in soil, the forest can be considered to be neither saturated nor having reached a N saturation transition stage.
  • Michopoulos, Forest Research Institute of Athens, Terma Alkmanos, Athens 115 28, Greece E-mail: mipa@fria.gr (email)
  • Baloutsos, Forest Research Institute of Athens, Terma Alkmanos, Athens 115 28, Greece E-mail: gb@nn.gr
  • Economou, Forest Research Institute of Athens, Terma Alkmanos, Athens 115 28, Greece E-mail: ae@nn.gr
article id 481, category Research article
K. S. Wang. (2003). Relationship between empty seed and genetic factors in European beech (Fagus sylvatica L.). Silva Fennica vol. 37 no. 4 article id 481. https://doi.org/10.14214/sf.481
Keywords: Fagus sylvatica L.; allozyme; empty seeds; selfing; outcrossing rate; correlation
Abstract | View details | Full text in PDF | Author Info
The relationship between percentage of empty seed (Pes) and genetic factors was explored in an isolated stand of European beech (Fagus sylvatica L.). Nine allozyme loci (GOT-B, IDH-A, LAP-A, MDH-B, MDH-C, MNR-A, 6-PGDH-A, PGI-B and PGM-A) were used to estimate genetic factors. Pes ranged from 4.8% to 40.9% for seed samples of 91 trees within the stand and showed an approximate normal distribution. The average Pes was 21.4% and the repeatability of Pes was 43.4%. The multilocus estimate for outcrossing rate (tm) based on seed samples of 30 trees within the stand was 1.015 (SE = 0.011) and the mean single locus estimate was slightly higher at 1.061 (SE = 0.026). No evidence of biparental inbreeding was found. Weak positive correlation between Pes and maximum selfing rate as well as and significant negative correlation between Pes and multilocus outcrossing rate indicated that self-fertilization may be explained as one of the important causes of empty seeds in beech.
  • Wang, Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada E-mail: kshengw@yahoo.ca (email)
article id 520, category Research article
Rüdiger Grote. (2002). Foliage and branch biomass estimation of coniferous and deciduous tree species. Silva Fennica vol. 36 no. 4 article id 520. https://doi.org/10.14214/sf.520
Keywords: Picea abies; Fagus sylvatica; biomass estimation; crown dimensions; allometric equations
Abstract | View details | Full text in PDF | Author Info
Under changing environmental conditions, biomass development on the tree and the stand level may differ from today, regardless if the induced change is due to a shift in the general climate properties or to forest management. Under these conditions, tree biomass can not be derived from tables based on former investigations but has to be defined from particular biomass investigations, which generally calculate tree and stand biomass from sample branches using allometric relationships. Therefore, sample measurements on harvested trees are needed. In this paper, foliage and branch biomass estimation for 6 Norway spruces (Picea abies) and 6 beeches (Fagus sylvatica) harvested in a 56-year-old mixed stand in southern Germany is presented. Different allometric models are investigated to derive branch biomass from branch dimension for both species. The equations that are based on branch length, foliated branch fraction, and branch diameter are used for tree and stand level estimates. However, the variation within the 6 trees of each species was too large for a reliable calculation of stand biomass, especially in case of beech branch wood. Furthermore, the necessity of allometric relations and their applicability in individual-tree models is discussed, and the importance of suitable branch- and tree selection is underlined.
  • Grote, TU München, Chair of Forest Yield Science, Am Hochanger 13, D-85354 Freising, Germany E-mail: ruediger.grote@lrz.tu-muenchen.de (email)

Category : Research note

article id 7818, category Research note
Roberts Matisons, Guntars Šņepsts, Līga Puriņa, Jānis Donis, Āris Jansons. (2018). Dominant height growth of European beech at the northeasternmost stands in Europe. Silva Fennica vol. 52 no. 1 article id 7818. https://doi.org/10.14214/sf.7818
Keywords: site index; Fagus sylvatica; generalized algebraic difference approach; height models
Highlights: The dominant height growth of the introduced European beech was modelled using the generalised algebraic difference approach; The Chapman-Richards and Sloboda models showed the best fit to the data; Height growth of the second generation trees exceeded the first generation trees; In the western part of Latvia, height growth of beech exceeded that in southern Sweden.
Abstract | Full text in HTML | Full text in PDF | Author Info

The height growth of trees influences the productivity of stands and the competitiveness of species, shaping the range of their distribution. Dominant height growth was assessed for European beech (Fagus sylvatica L.), growing outside of its natural distribution range in the western part of Latvia. In 10 neighbouring experimental stands, 20 dominant trees were felled for stem analysis. Height growth was modelled using the generalised algebraic difference approach, applying several non-linear equations and mixed procedures. The Chapman-Richards and Sloboda models showed the best fit to the data. Height growth of the second generation (younger) trees exceeded that of the first generation, and followed curve for a higher site index, suggesting sufficient adaptation and improving conditions. Height growth of the studied beech exceeded predictions for beech in southern Sweden, which is considered to be the northern limit of the species range, yet the growth pattern differed. In Latvia, slower height growth was estimated for site indices < 32 m (in 100 years) during the first 60 years, yet larger maximal height was predicted, suggesting a longer establishment period. Nevertheless, the improving height growth indicated increasing potential for the application of the species in commercial forestry, and an expansion of the species within the region even during the 21th century.

  • Matisons, Latvian State Forest Research Institute “Silava”, Rīgas str. 111, Salaspils, Latvia, LV2169 E-mail: robism@inbox.lv (email)
  • Šņepsts, Latvian State Forest Research Institute “Silava”, Rīgas str. 111, Salaspils, Latvia, LV2169 E-mail: guntars.snepsts@silava.lv
  • Puriņa, Latvian State Forest Research Institute “Silava”, Rīgas str. 111, Salaspils, Latvia, LV2169 E-mail: liga.purina@silava.lv
  • Donis, Latvian State Forest Research Institute “Silava”, Rīgas str. 111, Salaspils, Latvia, LV2169 E-mail: janis.donis@silava.lv
  • Jansons, Latvian State Forest Research Institute “Silava”, Rīgas str. 111, Salaspils, Latvia, LV2169 E-mail: aris.jansons@silava.lv
article id 1656, category Research note
Līga Puriņa, Roberts Matisons, Āris Jansons, Silva Šēnhofa. (2016). Survival of European beech in the central part of Latvia 33 years since the plantation. Silva Fennica vol. 50 no. 4 article id 1656. https://doi.org/10.14214/sf.1656
Keywords: Fagus sylvatica; introduction experiment; sapling mortality; northeasternmost beech trial
Highlights: Beech saplings growing in the central part of Latvia had ca. 80% survival during the recent three decades; The dimensions of saplings varied greatly likely due to canopy conditions; Some beech self-regeneration was observed; Mainly saplings had narrow crowns; The distribution of sapling dimensions had the reverse-J shape, suggesting successful development of beech.
Abstract | Full text in HTML | Full text in PDF | Author Info

The projections of vegetation zones suggest increasing growth potential of European beech (Fagus sylvatica L.) in Northern Europe. Such changes usually are most apparent in the marginal populations. In this study, survival of young beech growing in an experimental plantation under canopy of a mixed coniferous stand in the central part of Latvia was assessed after 33 years since the establishment. The planting material originated from an older experimental stand in the western part of Latvia. Although, at present, the studied plantation could be considered as the northeasternmost beech stand in Europe, a good survival was observed – ca. 80% of the seedlings have survived, despite several cold spells of ca. –30 °C that occurred during the recent three decades. Additionally, some self-regeneration i.e. branch sprouting was observed. The saplings were rather low, as their mean height was ca. 4 m. Still, some individuals, which were growing under canopy openings, reached considerable dimensions; their height and stem diameter exceeded 10 m and 9 cm, respectively. The distribution of sapling dimensions had the reverse-J shape that is typical for shade tolerant species, indicating normal development of the beech regrowth. The crowns of saplings were narrow and the stems were spindly, suggesting that trees with a good stem quality might be bred. Hence, our results suggest that environmental conditions in the central part of Latvia have been satisfactory for beech, thus encouraging establishment of more extensive trials within the region.

  • Puriņa, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: liga.purina@silava.lv
  • Matisons, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: robism@inbox.lv (email)
  • Jansons, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: aris.jansons@silava.lv
  • Šēnhofa, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: silva.senhofa@silava.lv
article id 1255, category Research note
Āris Jansons, Roberts Matisons, Līga Puriņa, Una Neimane, Jānis Jansons. (2015). Relationships between climatic variables and tree-ring width of European beech and European larch growing outside of their natural distribution area. Silva Fennica vol. 49 no. 1 article id 1255. https://doi.org/10.14214/sf.1255
Keywords: Fagus sylvatica; introduced species; wood increment; climatic limitation; Latvia; Larix decidua
Highlights: In western Latvia, variation of tree-ring width of European beech and European larch within stands was similar; Dry summers and cold winters caused common event years in tree-rings; Moisture availability at the end of summer was apparently the main limiting factor for tree-ring width; Winter and spring temperature did not have significant and lasting effect on variation of tree-ring width.
Abstract | Full text in HTML | Full text in PDF | Author Info
Relationships between climatic variables and tree-ring width (TRW) of dominant European larch (Larix decidua Mill.) and European beech (Fagus sylvatica L.) trees growing outside of their natural distribution area in western Latvia were studied. Chronologies of TRW, which covered the periods 1949–2012 and 1911–2012, were produced for beech and larch, respectively. Common signatures in TRW between both species were observed, but their amplitude differed. Correlation analysis showed that variation of TRW of both species was affected by drought related climatic variables. Tree-ring width of beech was affected by temperature in the previous July and August and the effect of spring and autumn temperature was observed. Since the 1980s, the effect of July precipitation has become significant. Summer precipitation was significant for larch in the mid-part of the previous century; however, temperature in the previous September has become a limiting factor since 1970s. The limiting effect of winter and spring temperature apparently lost its significance around the 1950s.
  • Jansons, LSFRI „SILAVA”, Rigas Str. 111, Salaspils, Latvia, LV2169 E-mail: aris.jansons@silava.lv
  • Matisons, LSFRI „SILAVA”, Rigas Str. 111, Salaspils, Latvia, LV2169 E-mail: robism@inbox.lv (email)
  • Puriņa, LSFRI „SILAVA”, Rigas Str. 111, Salaspils, Latvia, LV2169 E-mail: liga.purina@silava.lv
  • Neimane, LSFRI „SILAVA”, Rigas Str. 111, Salaspils, Latvia, LV2169 E-mail: una.neimane@silava.lv
  • Jansons, Forest Competence Centre, Dzerbenes str. 27, Riga, Latvia, LV1006 E-mail: janis.jansons@mnkc.lv

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles