The paper discusses the principles of forest management in the state forests of Finland, and the contradictions in choosing between the different land uses. These principles of the forest management are sustainable use of natural resources, economic and effective management, and taking in account nature conservation, protection of environment, recreation services and employment issues in all activities of the Forest Service. Even regional policy affects the management planning in the state forests.
The economic analysis is based on computer simulations which covered a seedling rotation and three successive coppice rotations. Calculations were carried out for the four site productivity classes in Eucalyptus globulus plantations. The rotation length that maximized the land expectation value is 12–20 years for seedling rotation and 8–16 years for coppice rotations with discounting rates 2–8%. The mean wood production is over 40 m3/ha/a in the best site class and about 10 m3/ha/a in the poorest class with rotation lengths ranging from 10 to over 20 years. Thinnings increase the wood production and land expectation value by a few percentage points. In areas suitable to Eucalyptus globulus growth, the land expectation value is considerably higher in forestry than in agriculture, except in very poor areas or with very high rate of interest.
The PDF includes an abstract in Finnish.
The article describes the two approaches which are evident in planning and management of nature and landscape. One is based on traditional architectural thinking, emphasizing the significance of subjective intuition and practical creative work. The other has evolved from the study of the economic utilization of natural resources, emphasizing the significance of rational thinking and scientific analysis.
This paper was presented in the ‘Man and the Biosphere’ programme project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
The article describes the results of the studies made in 24 Finnish housing areas. They show that the building density is not as important as the way of building and the site planning, in the view of preserving natural vegetation in the site. Building on slopes was difficult with modern building techniques because of the extensive earthwork required.
This paper was presented in the ‘Man and the Biosphere’ programme Project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
The potentials of forests in abatement of urban noise and air impurities are discussed based on literature and calculations. Excess attenuation of 6–7 dB seems to be possible in noise abatement applying Norway spruce (Picea abies (L.) H. Karst.) plantations. The potential in dust sedimentation is of 10,000–20,000 kg/ha/year and absorbtion to 7 kg/ha/yr. Forests seem also have considerable potential for control of climatic conditions in urban areas. Management of forests in urban environment is discussed.
This paper was presented in the ‘Man and the Biosphere’ programme Project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
MAB Project 2 concentrates on the influences of man’s activities on forests with no special consideration to any particular research field. At the same time as the swift development of research methods has brought the natural sciences and forest biology very near to each other, the circle of users of research results in forest biology has widened to include area and city planners etc. In Finland, the main role of MAB Project 2 is to promote mutual exchange between the users and producers of research results in forest biology and to facilitate both national and international co-operation between all research workers and organizations interested in this field.
This paper was presented in the ‘Man and the Biosphere’ programme project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The article examines the outdoor recreation area of Pyynikki in the centre of the city of Tampere in Southern Finland from the viewpoint of social sciences. It was demonstrated that sociological factors are connected with the physical environmental factors by the welfare factors.
This paper was presented in the ‘Man and the Biosphere’ programme Project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
The article examines the problems of interdisciplinary research and the Finnish participation in MAB Project 2, which concentrates on the influences of man’s activities on forests. From the Finnish point of view, the main research areas are the effects of forestry activities which affect large areas, multiple use of forests, forests and environmental pollution, and the effects of energy economy.
This paper was presented in the ‘Man and the Biosphere’ programme project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
The term ’multiple use’ was introduced in Finland in the late 1960’s as a planning principle for the use of natural resources. It was hoped that multiple use, in contrast to ’single use’, would be less destructive and more amenable to multiple interests and to more efficient planning. However, the term ’multiple use’ carries several hidden assumptions which superficially at least seem easy to handle but which may, at the very end, prove equally destructive to the planned object. This term generally lacks the dimensions of time and place. In reality, different uses follow in a definite sequence and in definite place. As a planning strategy, multiple use may lead, if carelessly applied, to quite unexpected results that run contrary to the intended purposes.
This paper was presented in the ‘Man and the Biosphere’ programme project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
Man and the Biosphere (MAB) programme of UNESCO was launched in 1970. This interdisciplinary programme represents a new integrated approach to research, training and action aimed at improving man’s partnership with the environment. It consists of 14 project areas.
The Academy of Finland and the Finnish Committee for the MAB, in cooperation with the University of Helsinki and the city of Tampere organized a seminar with an aim of reviewing the execution of the Finnish participation in the MAB project No. 2. The seminar took place at Hyytiälä, a forest research station of the University of Helsinki, on August 24–25 1978.
During the seminar, an excursion was made to Pyynikki esker, a unique natural park close to the centre of the city of Tamper. Eight papers were presented and discussed in the seminar. The papers are published in this issue of Silva Fennica.
The PDF includes a summary in English.
In the southwestern pre-Saharan arid zone of Morocco, the endemic argan forest (Argania spinosa) had been almost completely destroyed in the 1960s due to intensive coal mining and mixed cereal-livestock farming. These activities turned out to be unviable and a massive rural exodus occurred in the 1970s. Local populations started to develop maintenance-free prickly pear (Opuntia ficus-indica) cultivation at large scale in order to keep their land ownership rights, while reducing their traditional agropastoral activity. We conducted a survey in order to characterize the relationships between the age of prickly pear orchards and argan tree regeneration. We also explored facilitating factors, such as soil organic matter and mycorrhiza. Results showed a high positive correlation (r2 = 0.75, p < 0.001) between the age of prickly pear orchards and argan tree resprouts, but with differences depending on a continentality gradient. The soil organic matter content also showed highly significant differences (p < 0.001) depending on the age of the prickly pear plantation, while spora density did not show such differences. The recent high economic value attributed to prickly pear fruits, and to both argan and prickly pear seed oil, has given farmers the opportunity to develop a lucrative agricultural activity, while promoting the recovery of native vegetation. This situation constitutes a remarkable example of speculative agricultural development in a very harsh environment, in phase with ecological priorities for combating desertification. It could represent an alternative to the externally-generated projects sustained by high levels of public funding, with ecological, economic and social impacts which are sometimes questionable.
Silver birch (Betula pendula Roth.) is one of the main pioneer tree species occupying large areas of abandoned agricultural lands under natural succession in Estonia. We estimated aboveground biomass (AGB) dynamics during 17 growing seasons, and analysed soil nitrogen (N) and carbon (C) dynamics for 10 year period in a silver birch stand growing on former arable land. Main N fluxes were estimated and nitrogen budget for 10-year-old stand was compiled. The leafless AGB and stem mass of the stand at the age of 17-years were 94 and 76 Mg ha–1 respectively. The current annual increment (CAI) of stemwood fluctuated, peaking at 10 Mg ha–1 yr–1 at the age of 15 years; the mean annual increment (MAI) fluctuated at around 4–5 Mg ha–1. The annual leaf mass of the stand stabilised at around 3 Mg ha–1 yr–1. The stand density decreased from 11600 to 2700 trees ha–1 in the 8- and 17-year-old stand, respectively. The largest fluxes in N budget were net nitrogen mineralization and gaseous N2-N emission. The estimated fluxes of N2O and N2 were 0.12 and 83 kg ha–1 yr–1, respectively; N leaching was negligible. Nitrogen retranslocation from senescing leaves was approximately 45 kg ha–1, N was mainly retranslocated into stembark. The N content in the upper 0–10 cm soil layer increased significantly (145 kg ha–1) from 2004 to 2014; soil C content remained stable. Both the woody biomass dynamics and the N cycling of the stand witness the potential for bioenergetics of such ecosystems.