Current issue: 58(4)
The efficacy of pine tar as a moose (Alces alces L.) contact repellent was tested in young Scots pine (Pinus sylvestris L.) stands suffering from moose damage in Southern Finland during the winter 1981–82. Application of tar to shoots by spraying protected the trees satisfactorily throughout the winter.
The PDF includes an abstract in Finnish.
The main stem of young Scots pine (Pinus sylvestris L.) trees was cut off halfway along the current leading shoot and the two previous years’ leading shoots to simulate moose (Alces alces) damage. Trees of the same size were chosen as controls before treatments. The experiment was inspected ten years after artificial stem breakage. Removing the current leading shoot and the second shoot did not essentially affect the height and diameter growth of the trees. Removal down to the third shoot reduced the height as well as diameter growth. The average loss in growth was equivalent to less than one year’s growth. When the stem was cut off at the second or third shoot, stem crookedness and the presence of knots resulted in stem defects that will subsequently reduce the sawtimber quality. A high proportion of the stem defects will obviously still be visible at the first thinning cutting. Removing injured trees as pulpwood and pruning the remaining parts of cut stems evidently improves the quality of pine stand with moose damage.
The PDF includes an abstract in Finnish.
The effects of forest fertilizers on the intensity of damage caused by two curculionid (Brachyderes incanus L., Brachonyx pineti Paykull) and two chrysomelid (Calomicrus pinicola Duft., Cryptocephalus pini L.) species feeding as adults on Scots pine (Pinus sylvestris L.) needles were investigated in two pine stands growing on dry (Calluna type) sites in South-West Finland. There was much variation in the abundance of the insect species both between the trials and the sample plots. Nitrogen fertilization increased both the height and radial growth of the pines. The curculinids were slightly more abundant on the nitrogen-treated plots. Potassium application seemed to decrease the feeding intensity of the chrysomelids especially. The overall effects were so small that forest fertilization cannot be considered as an effective control method against needle-feeding beetles.
The PDF includes an abstract in Finnish.
The natural resistance of Finnish-grown Pinus sylvestris L. heartwood to Macrotermitinae termites was tested in Zambia in graveyard conditions. The heartwood exhibited some natural resistance but durability was, however, far from practical immunity. There was significant tree-to-tree variation in the resistance of heartwood of P. Sylvestris.
The PDF includes a summary in Finnish.
The size, nutrient contents and terpene composition of needles of Scots pine (Pinus sylvestris L.) saplings untouched and repeatedly browsed by the moose (Alces alces L.) were compared. Material was collected from a 14-years old and 2.5 m high pine stand in Bromarv, Southern Finland. The average length and fresh and dry weight of the needles were measured, and nutrient content (N, P, K, Ca, Mg, B, Cu) was determined.
The needles of repeatedly browsed pines became long and robust. There was, however, no difference between the dry matter percentage between the needles. The average nitrogen content was higher in the rebrowsed trees. Nitrogen content is, however, not directly correlated with the palatability of pine needles. Even phosphorus and boron content were higher in the damaged trees. No difference was found in Ca, K, Mg and Cu contents of the browsed and control pine saplings.
The PDF includes a summary in Finnish.
Flight periods of insects breeding on birch (Betula sp.) timber were observed by means of window flight traps baited with freshly cut birch logs in five locations in Finland from 1972 to 1976. Only few species were caught during the study. In general, these species were on the wing during midsummer, although flight periods of some of them were relatively long. Scolytus ratzeburgi Jans. caused harmful staining of wood within a month from attack, but the damage by the wood-boring pests remained negligible throughout the first storage summer.
The PDF includes a summary in Finnish.
The resistance of Finnish softwood timbers to Macrotermitinae termites was tentatively tested under tropical conditions in Zambia using a field microtest method. Picea abies (L.) H. Karst. and Larix sibirica L. sapwood and heartwood, as well as Pinus sylvestris L. sapwood, and the sapwood of the locally grown Pinus kesiya, exhibited no natural termite resistance. On the other hand, Juniperus communis heartwood appeared to be virtually immune and the heartwood of P. Sylvestris had some resistance. There were also some differences in the resistance of the heartwood of the different P. Sylvestris individuals tested, which was correlated with the width of the annual rings in the wood samples. The termite species involved were Microtermes sp. and Odontotermes sp. The possibilities of using different types of Finnish softwood timber in the regions in the tropics where there is a risk of termite damage is discussed.
The PDF includes a summary in Finnish.
The monoterpene composition of the needle oil of Pinus oocarpa Schiede ex Schltdl. and Pinus caribaea Morelet growing in Zambia were studied by means of GC-MS. P. oocarpa needle samples were taken from 29 trees representing different clones in a seed orchard and from 43 trees in a commercial plantation in 1980. The P. caribaea needle samples were collected from 17 clones in a seed orchard.
Nine compounds were positively identified in the monoterpene fraction of P. oocarpa and eight in that of P. caribaea. The amounts of these compounds showed marked tree-to-tree variation and the sample trees were screened into distinct groups on the basis of the variation. The results give a basis for selection in favour of pest resistance and turpentine yield.
The PDF includes a summary in Finnish.
Monoterpene hydrocarbon contents of needles in Scots pine (Pinus sylvestris L.) plants both damaged and untouched by the moose (Alces alces L.) were compared in the study. The material was collected in an 8-year-old plantation in Central Finland. Needle samples were taken from the topmost shoot whorl of the plants in the middle of April, 1976. Only minor differences were found between the plant groups. Thus, terpenes in pine presumably play no important role in the browsing preference by moose.
The PDF includes a summary in Finnish.
Hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) has been grown in Finland for about 20 years, and the area of the stands is currently about 400 ha. Growing is planned to be greatly expanded to grow raw material for match industry. The aim of this investigation was to study susceptibility of hybrid aspen to insect damages. Insect damages in hybrid aspen, growing in Southern Finland, were examined in 15 stands in 1972. Saperda species were observed to be the most numerous and harmful insect species. Saperda carcharias L. occurred in 26% and Saperda populnea L. in 36% off trees inspected. Mass occurrence of Chionaspis salicis L. was observed in some sample areas.
The study was carried out in order to establish the possible influence of damage caused to the needles of Picea abies (L.) H. Karst. by the spruce spider mite, Oligonychus ununguis (Jacobi), and the growth of the damaged seedlings. The study was carried out in 1968–1970 by comparing growth of seedlings infected with spruce spider mite with that of seedlings where mites had been killed with acaricide (Eradex®). In the seedlings that had not been treated with acaricide, the number of wintering eggs were 60, 20 and 5 per shoot in the various years of the study. When the experiment was laid out, before planting and acaricide treatment, the seedlings were four years old, all seadlings were heavily infected, the number of wintering eggs being 100 per shoot. The growth of infected seedlings was 3, 20 and 15% smaller than that obtained for the seedlings which had been treated with acaricide.
The PDF includes a summary in English.
The aim of this study was to establish the need of treatment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seeds to be sown in greenhouse. 3 x 100 seeds of each treatment (soaking in water, treatment with Pb3O4, treatment with tiram-containing coating substance) were sown in a glasshouse on a fertilized garden peat, and covered with peat layer of 6 mm thickness. The development of seedlings was followed for 100 days before the final measurement.
Soaking the seeds with water made germination somewhat faster. In spruce the germination percentage increased, but the opposite was observed in pine. No difference could be observed between the results from soaking with acid water from peat soil and lake water. Drying the soaked seeds for a week before sowing had no harmful influence on the germination or the early development of the seedlings. Treatment with Pb3O4 did not affect the germination speed or the seedling percentage of pine or spruce, but increased the germination percentage of spruce. Coating decreased germination and seedling percentages in pine. However, the differences between the treatments were so small that their practical significance is negligible.
Germination of both the species initiated on an average in 8 days, and 16 days after sowing 80% of the seeds had germinated. Seedling mortality was about 10% of the total number of seedlings, the most common reason being damping-off.
The PDF includes a summary in English.
In Finland the mite Nalepella is found in Norway spruce (Picea abies (L.) H. Karst.) in forests practically in every tree, and even in the nurseries. The paper reports on the occurrence of Nalepella Haarlovi var. picea-abietis Löyttyniemi in Finland in tree nurseries in Finland. The study is based on a large material, collected in connection with an investigation into spruce spider mites.
Nalepella lives vagrantly on the needles. Due to the sucking of the mites, the needles turn yellow, become dry an die. Single patches from sucking cannot be seen by the naked eye. They occur on all sides of the needles. The worst damage to spruce seedlings in nurseries is caused to the needles located in the top of the seedling. Sometimes the terminal bud dryes and the whole terminal shoot can die. However, the whole seedlings seldom die in consequence of the Nalepella mite alone. Subsequent damage to the injured needles is often caused by fungus Cladosporium herbarum.
The study shows that the mite causes economically significant damages only in the nurseries. In forests no such damages were observed in seedlings or in older trees. In 1965–68, significant damages occurred in 16 nurseries in Finland. About 600,000 four-year-old seedlings were destroyed in 1967. The damages were economically important only in the 4-year-old seedlings.
According to the study, seedlings damaged by Nalepella can be used for planting as they recover rather well after planting in the forest. Moreover, the damages end after planting, and density of the mite population decreases during the first summer.
The mite overwinters as egg on needles. The eggs hatch in Southern Finland in the end of April and in the beginning of May.
The PDF includes a summary in English.
In early spring 1968 it was noticed that the black grouses (Lyrurus tetris L.) was eating terminal shoots of Scots pine (Pinus sylvestris L.) seedlings in a tree nursery in Luumäki, Southern Finland. The terminal shoots were picked 1–4 cm from the top of the seedlings. In total some thousands of two-year-old seedlings were damaged. The depth of the snow was 10–15 cm deep and only the tops of the seedlings could be seen above the surface of the snow.
The PDF includes a summary in English.
The paper studied the effect of felling time and conditions in the forest depot of timber to damages caused by spruce ambrosia beetle (Trypodendron lineatum Oliv.) to coniferous timber with bark, both experimentally and observing forest depots in Finland. Effects of fellings was studied by studying the abundance of the beetles in logging residue.
The results show that the spruce ambrosia beetles favour timber felled during the late autumn and winter, stored in a shaded place in the forest. In addition, new spruce stumps maintain and increase the beetle population. Fellings in the forest will increase population during the next year and cause damages in forest depot of timber nearby, because the insect breeds in the stumps. The experiments showed that it is possible to diminish the damages caused by the beetle to timber with bark by spraying with insecticides, and timing the fellings and transport of timber so that there is no timber in the forest in the spring during the time when the insect swarms.
The PDF includes a summary in German.