Measurements of wind and subsequent swaying of two Scots pines (Pinus sylvestris L.) were made at stand edge conditions. The horizontal windspeed was measured ten meters outside of the stand edge for four heights using cup anemometers. The compass directions were determined using a directional vane placed above the canopy. Tree swaying was measured by accelerometers at xy-coordinates. The shape of the wind profile at the stand edge varied to some degree depending on windspeed, but the form was a logarithmic one. Swaying of trees increased along with increasing windspeed. Furthermore, swaying was more or less irregular in relation to xy-coordinates, but it occurred, however, mainly perpendicularly to the direction of mean windspeed. The maximum bending of trees to the direction of mean windspeed varied also only little for various gusting windspeeds (average windspeed of 20 seconds) and dynamic wind loads. The maximum bending of trees was also in most cases less or equal to those predicted on the basis of static wind loads, when the mean windspeed for static load is taken as equal to the gusting windspeed.
The PDF includes an abstract in Finnish.
A model for the mechanism of windfall and stem breakage was constructed for single Scots pine (Pinus sylvestris L.) at the stand edge. The total turning moment arising from the wind drag and from the bending of stem and crown was calculated along with the breaking stress of the stem. Similarly, the support given by the root -soil plate anchorage was calculated. Windspeed variation within the crown and the vertical distribution of stem and crown weight were taken into account. Model computations showed that trees having a large height to diameter ratio were subjected to greater risk of falling down or breaking than trees with a small height to diameter ratio. The windspeed required to blow down a tree or break the stem of a tree decreased if the height to diameter ratio or the crown to stem ratio of trees increased.
The PDF includes an abstract in Finnish.
The basic density of the wood of the rowan tree (Sorbus aucuparia L.) is almost the same along the stem but that of the bark is increasing along the stem. The moisture content of the wood and of the bark is increasing along the stem. Its strength in the bending and in the compression is high. The volume shrinkage is high.
The PDF includes an abstract in Finnish
There are great impact forces in mechanized harvesting and wood yard in the mills which can cause breaks in timber. The impact strength of timber in green condition was tested in temperatures of +18°C and -18°C using sawn pieces (20 x 20 x 300 mm) of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), birch (Betula pendula Roth and B. pubescens Ehrh.), grey alder (Alnus incana L.) and aspen (Populus tremula L.). In addition, unbarked naturally round sticks (length 300 mm, diameter 15 and 35 mm) of the same species were tested.
The impact strength of round sticks was 1.5–4.4 times as great as that of sawn pieces. The reasons are possibly the avoidance of cell breaks at the surface as well as growth stresses. The frozen samples were clearly weaker than the unfrozen ones. As a rule, the impact bending strength increased with increased density of the species. However, the correlation varied greatly between species. If density was kept constant, an increase in the growth ring width decreased the impact strength. The reason may lie in the fracture mechanism.
The PDF includes a summary in English.
In order to evaluate the strength properties of boards made from small and large Norway spruce (Picea abies) butt logs, 15 small (top end diameter 13 cm) and 15 large (top end diameter 25 cm) logs were sampled from a sawmill in Finland. From each log two test pieces were made in order to measure the bending and compression strength, dry density and average ring width.
The boards from small logs were stronger and their density higher. When the differences between groups were analysed it was found that the strength was determined by the density and ring width. When the density was kept constant, the increase in ring width had a decreasing effect on the strength properties. Because there was a negative correlation between ring width and density, ring width alone had a great effect on the strength properties.
The PDF includes a summary in English.
A population consisting of 450 Norway spruce (Picea abies (L.) H. Karst.) samples was gathered from northern and southern Finnish wood. The static bending strength was affected greatly by the density of the wood. However, keeping the density constant, the bending strength was higher in northern than in southern Finnish wood. The reason was the effect of the growth ring width.
The basic density was affected by the growth rate. Keeping the growth ring width constant, the basic density was over 5 kg/m3 lower in northern than in southern Finnish wood. This result supports the earlier findings on the effect of latitude.
The PDF includes a summary in English.
The objective of the investigation was to determine the differences between timber grown on a peatland before and after draining, in respect of compressive strength parallel to the grain, static bending strength and density. In addition, the characteristics of boundary zone between the wood formed before, and after the draining with wider growth rings was studied. 41 Scots pine (Pinus sylvestris L.) and 22 Norway spruce (Picea abies (L.) H. Karst.) trees were studied.
The compressive strength of pine usually decreased from the butt end upwards, but no trend was observed in spruce wood. In coniferous trees, wide-ringed wood formed subsequent to draining was slightly lighter than the close-ringed wood produced prior the draining. The density of pine as well as spruce increases as the width of the growth rings decrease up to a certain limit. The strength of the different kinds of wood seems to decrease from the butt end upwards.
In both species, the compressive strength parallel to the grain and the bending strength are lowest in such wood that contains exclusively wide-ringed wood formed subsequent to draining. Also, compressive and bending strength increase with decreasing width of the growth rings. The longitudinal shrinkage of compression wood in spruce was several times that of normal wood, and the bending strength was lower than that of normal wood particularly in spruce. The compressive strength parallel to the grain in dry condition was, however, higher than in normal wood both in pine and spruce.
The PDF includes a summary in English.
Birch wood is used widely in wooden structures where mechanical strength is needed. The aim of the research was to study the influence of the relative share of mechanically weak tracheids, and length of the wood fibers on specific gravity and bending strength of downy birch (Betula pubescens Ehrh.) wood. According to the results, the strength of wood is strongly dependent on the relative share of tracheids, and length of the libriform cells. The strength of the wood increases when the share of tracheids decreases and the length of libriform cells increases. The specific gravity can be used as an indication of the strength of wood, especially if it is possible to analyze the structure of the wood.
The PDF includes a summary in German.