The paper evaluates the effect of the change in the forest taxation laws which came into force in January 1977 on the value of the taxable cubic metre in each commune, a measure of the mean timber price. The taxable cubic metre is taken into include timber assortments corresponding to the mean planned cut for the area, which are then assessment at their mean local stumpage prices. Account is also taken of the mean costs involved in forestry, which increase from the south of Finland to the north.
The new principles of taxation, based on data from the V and VI National Forest Inventories, give higher values for the taxable cubic metre, and thus heavier taxation, in the Southern Finland, largely by allowing for a higher proportion of saw logs than previously, and lower values, an easing of taxation, in the north.
The PDF includes a summary in English.
As a subproblem in the joint Nordic Terrain-Machine Project the requirements set by forest road construction on the terrain classifications were studied during the summer 1973 in ten operations, in which either a bulldozer or an excavator method was used.
The most important terrain factors of the ground factors affecting the construction time of the road base were the so-called depth index and the moisture content of the soil, and in addition to these the amount of stumps as a ground roughness factor. These variables explained, however, only a rather minor part of the wide variation in the construction output of the practical operations.
The PDF includes a summary in English.
Silva Fennica issue 42 includes presentations held in professional development courses, arranged for foresters working in public administration in 1936. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service
This presentation describes determination of stumpage prices in timber sales of the state forests in Finland.
Observations of connections between the roots of living trees and root systems of stumps have been reported already in 1900s. In Finland root connections have been found in Birch (Betula sp.), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), but there are no studies on abundance of the connections. This investigation studied root connections in a series of naturally regenerated Scots pine stands from seedling stands to mature trees in Southern Finland, and some sown seedling stands.
Root connections were found to be common in naturally regenerated, older stands that had passed the thicket stage. Approximately 21-28% of the trees had at least one root connection to another living tree, dead tree or living stump. Connections were few or absent in seedling stands. Sown seedling groups had many root connections in contrary to naturally regenerated seedling stands. Trees belonging to the dominating canopy class had most root connections. The trees could form a network of up to twenty trees and living stumps. Root connections were more common the larger the tree was or the nearer the trees grew each other. The coalescent roots were often situated near the stem. Experiments showed that water and nutrients transferred in the roots could move from one tree to another. Living stumps from previous fellings were relatively common. In the sites studied, there was in average 178 stumps connected to a living tree per hectare.
The PDF includes a summary in German.
The article is a review on the costs of raw materials in the Finnish sawmill industry in 1920s based on statistics collected from the members of the Central Association of the Finnish Woodworking Industries (now Finnish Forest Industries). The article includes statistics about the average size of if the saw timber bought in standing sales from private forests and harvested from the industry’s own forests, stumpage price of the timber, and labour costs of the harvesting of the wood. The average size of the logs was greater in the northern part of Finland, where the sawmills could limit the purchases of smaller timber. In the southern part of the country, the size of the timber decreased in 1922‒1926 due to growing demand of the timber. The long transport distances in the north influenced the costs. The number of logs per tree increased during the period. The level of stumpage price varied considerably in different parts of the country, falling from the south-west to the east and north. Competition of raw material increased the stumpage prices in 1922a and 1926‒27. The international economic downturn influenced the industry in 1929‒1931.
The PDF includes a summary in German.
The survey focuses on the stumpage prices of standing sales, where the buyer of the wood takes care of felling and transport of the timber. The study concentrates further on conifer sawn timber. The prices of the sawn timber rose continuously from 1891 to 1910. After 1913 the stumpage price fluctuations reflected the changes in the market. The article includes a detailed description on the changes of the saw timber in 1913-1922 and the factors affecting the prices. The prices are shown for different parts of the Finland. The first world war affects the prices and demand on saw timber in 1917-1918. In Northern Finland the prices of sawn timber increased slower than in Southern Finland. In general, the unfavorable factors have had stronger impact on the stumpage prices than the favorable.
The PDF includes a summary in German.
The investigations that have studied peat layers in peatlands have shown that the peatlands in several countries have layers containing tree stumps of different tree species. The stump layers have been explained by local hydrological changes that have caused paludification, or changes in climate.
Peat layers were studied in drained peatlands in Finland, and ditches were used to study the peat profiles. A peatland in Multia in Central Finland was studied in more detail. Tree stump layer patterns that would support the climate change explanation was not found in the Finnish peatlands. The peat changes usually gradually more oligotrophic towards the surface. The stump layers seemed to be caused by local drier periods. According to the layers of Sphagnum-peat near the bottom of the peatlands and the pollen studies indicate that the peatlands have been formed at different times. In South-West Finland, the peat profiles had more apparent layer patterns than in Central Finland, but these were not considered to be caused by changes in climate.
The PDF includes a summary in German.
The aim of this paper was to study the nature of the relative areal differences in the Finnish forests in respect of timber yield, intensity of exploitation and stumpage prices. The yield index is the most inconsistent and the source of the greatest regional differences. The differences arise even in Southern Finland, as the yield in the South-West is only 80 % of that obtained in Eastern Häme. The areal variations in the wastage index are of the order of only 10 % at most, and the stumpage price index is relatively constant, remaining within the 10 % limit, as far north as the southern boundary of the province of Oulu.
Indices for the forest yield and final forest returns suggest that the further one goes in Finland the greater the discrepancy between the two, as a consequence of the increase in stumpage price differences. Thus, whereas the yield per hectare in North-Eastern Finland is about 20 % of that in Eastern Häme, the stumpage price is similarly only just over 50 % of that prevailing in the latter area. This, the resulting returns per hectare are only 10 % of those obtainable in the more southerly area. When the return per hectare for the Forestry Board District of Eastern Häme is represented by the index 100, one then obtains corresponding return indices of 21.0 for the Northern Ostrobothnia and Kainuu area, 13.0 for Lapland and 10.0 for North-Eastern Finland. Thus, it may be said that roughly 10 hectares of forest land in Lapland, 5 in Northern Ostrobothnia or Kainuu, or 2 in Northern Karelia or the coastal area of southern and central Ostrobothnia would be required to produce the same returns as 1 hectare in Eastern Häme. This represents an extremely wide range of variation within the borders of one country.
This work provides a clear and sufficiently accurate impression of the order of magnitude of the areal differences in returns from the Finnish forests, and may thus serve as an adequate basis for the taking of decisions in this field.
The PDF includes a summary in English.