Current issue: 58(5)
Investigations carried out in the Kola peninsula (northern taiga) and in the South-western part of Western Siberia (southern taiga and forest-steppe) revealed identical course of the postfire restoration process of forest litter thickness in Scots pine (Pinus sylvestris L.) forests. Despite the differences in mean annual temperature (2°C) and other climatic characteristics the recovery time for thickness of forest litter in both regions amounts to 90–100 years after fire in pine forests of lichen site type and 120–140 years – in green moss type; the thickness of forest litter therewith corresponds 3–4 cm and 7–8 cm respectively. That mean that within the natural borders of pine forests, communities of a specific type possess uniform characteristics of restoration. On the basis of empirical data, it appears that the predicted increase of mean annual temperature of earth surface by (2°C) will not bring changes into the character of postfire recovery of forest litter thickness. It was shown that during the period of the recovery, which spans about 90 years after fire in pine forests of lichen and green moss-lichen site types and 140 years in ones of green moss site types, the rate of increasing of carbon store in the forest litter averaged 0.6 t ha-1 year-1, 0.1 t ha-1 year-1 and 0.2 t ha-1 year-1, respectively.
A system of zonality in Siberia has been formed under the control of continentality, which provides the heat and humidity regimes of the forest provinces. Three sectors of continentality and four to six boreal sub-zone form a framework for the systematization of the different features of land cover in Siberia. Their climatic ordination provides the fundamental basis for the principal potential forest types (composition, productivity) forecasting the current climate. These are useful in predicting the future transformations and succession under global change.
An equilibrium model driven by climatic parameters, the Siberian Vegetation Model, was used to estimate changes in the phytomass of Siberian vegetation under climate change scenarios (CO2 doubling) from four general circulation models (GCM's) of the atmosphere. Ecosystems were classified using a three-dimensional climatic ordination of growing degree days (above a 5 °C threshold), Budyko's dryness index (based on radiation balance and annual precipitation), and Conrad's continentality index. Phytomass density was estimated using published data of Bazilevich covering all vegetation zones in Siberia. Under current climate, total phytomass of Siberia is estimated to be 74.1 ± 2.0 Pg (petagram = 1,015 g). Note that this estimate is based on the current forested percentage in each vegetation class compiled from forest inventory data.
Moderate warming associated with the GISS (Goddard Institute for Space Studies) and OSU (Oregon State Univ.) projections resulted in a 23–26 % increase in phytomass (to 91.3 ± 2.1 Pg and 93.6 ± 2.4 Pg, respectively), primarily due to an increase in the productive Southern Taiga and Sub-taiga classes. Greater warming associated with the GFDL (General Fluid Dynamics Laboratory) and UKMO (United Kingdom Meteorological Office) projections resulted in a small 3–7 % increase in phytomass (to 76.6 ± 1.3 Pg and 79.6 ± 1.2 Pg, respectively). A major component of predicted change using GFDL and UKMO is the introduction of a vast Temperate Forest-Steppe class covering nearly 40% of the area of Siberia, at the expense of Taiga; with current climate, this vegetation class is nearly non-existent in Siberia. In addition, Sub-boreal Forest-Steppe phytomass double with all GCM predictions. In all four climate change scenarios, the predicted phytomass stock of all colder, northern classes is reduced considerably (viz., Tundra, Fore Tundra, northern Taiga, and Middle Taiga). Phytomass in Sub-taiga increases greatly with all scenarios, from a doubling with GFDL to quadrupling with OSU and GISS. Overall, phytomass of the Taiga biome (Northern, Middle, Southern and Sub-taiga) increased 15% in the moderate OSU and GISS scenarios and decreased by a third in the warmer UKMO and GFDL projections. In addition, a sensitivity analysis found that the percentage of a vegetation class that is forested is a major factor determining phytomass distribution. From 25 to 50% more phytomass is predicted under climate change if the forested proportion corresponding to potential rather than current vegetation is assumed.
The objective of the study was to compare different reforestation methods on ploughed areas in Finnish Lapland. Four species were compared: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), silver birch (Betula pendula Roth) and Siberian larch (Larix sibirica Ledeb.). The experiments were established in different parts of Lapland on different types of sites in 1970–72.
In Scots pine there was a difference of 15 percentage points in survival of seedlings between the best and worst methods of regeneration. Containerized seedlings and paper pot seedlings had the best survival rates. In Norway spruce the respective difference between sowing and planting was about 20 percentage points. In favour of planting. The survival rate can be increased by about 20 percentage points by selecting the right tree species. The average height varied from 25 cm (the sowed Norway spruce) to 179 cm (the planted silver birch) after 10 growing seasons. The birch was planted at the most fertile sites only. The longer time passed from the afforestation the clearer was the effect of the local growing conditions on the development of the seedlings. The elevation of the site was one factor seemed to influence the success of the seedlings.
The PDF includes a summary in English.
Of the foreign tree species Siberian larch (Larix sibirica Ledeb.) has the biggest economical potential in Finland. In its natural distribution the species grows mostly in mixed stands in other areas than the core of its range in Siberia, where it grows also in pure stands. However, growth studies have given contradictory results about how Siberian larch can manage competition of different tree species in mixed stands. In this study two-year old Siberian larch seedlings were planted in areas previously sown with Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). The growth of the trees was measured when the stands were 50 years old.
It appears that the stands, about 3700 larch seedlings per hectare, have originally been too been too dense. In the two thinnings done in the area, larch has probably been favoured, which has resulted in varying mix of pine and spruce. In the 50-year old stands, Siberian larch has developed faster than Scots pine and Norway spruce. Contrary to some previous studies, the results show that Siberian larch can be grown also in mixed stands, but the growth will probably be slower than in pure stands. Best growth is achieved in pure stands that have been planted thinly enough.
The PDF includes a summary in German.
The study area is state owned forest of Vesijako in southern middle Finland that has earlier been intensively managed with slash-and-burn agriculture and then partly reforested with foreign coniferous tree species after controlled burnings. The total area planted with foreign species consists of 66 sample areas, altogether 28 hectares. The data has been collected in summer 1909.
The most of studied sample areas have been unsuccessful, but there are still many areas that are too young to be assessed. The originally with foreign species reforested areas are now pine stands. The tree species in experiments have been e.g. larch (Larix sibirica and L. europaea), Siberian stone pine (Pinus cembra sibirica), Siberian fir (Abies sibirica o. pichta), balsam fir (Abies balsamea), white fir (Abies pectinate also Abies alba), white spruce (Picea alba also Picea glauca), Weymouth pinen (Pinus strobus) and European / Swiss mountain pine (Pinus montana also P. mugo, P. mugho).
The most important result of the experiments with controlled burning is that stand of grey alder (Alnus incana) with only low economic value can be effectively altered into coniferous forests (Pinus silvestris).Tree stands in the boreal treeline ecotone are, in addition to climate change, impacted by disturbances such as fire, water-related disturbances and logging. We aim to understand how these disturbances affect growth, age structure, and spatial patterns of larch stands in the north-eastern Siberian treeline ecotone (lower Kolyma River region), an insufficiently researched region. Stand structure of Larix cajanderi Mayr was studied at seven sites impacted by disturbances. Maximum tree age ranged from 44 to 300 years. Young to medium-aged stands had, independent of disturbance type, the highest stand densities with over 4000 larch trees per ha. These sites also had the highest growth rates for tree height and stem diameter. Overall lowest stand densities were found in a polygonal field at the northern end of the study area, with larches growing in distinct “tree islands”. At all sites, saplings are significantly clustered. Differences in fire severity led to contrasting stand structures with respect to tree, recruit, and overall stand densities. While a low severity fire resulted in low-density stands with high proportions of small and young larches, high severity fires resulted in high-density stands with high proportions of big trees. At water-disturbed sites, stand structure varied between waterlogged and drained sites and latitude. These mixed effects of climate and disturbance make it difficult to predict future stand characteristics and the treeline position.
Topographic complexity in mountainous ecosystems strongly influences plant growth and as such also wood formation. This wood formation can possibly be used to understand topographic variation of the main climatic drivers, e.g. by modulating frost events. Here we test the influence of different slope exposures on the spatio-temporal distribution of frost rings in Siberian spruce (Picea obovata Ledeb.) in the Southern Urals, Russia. We sampled on two opposite slopes, northeast (NE) and southwest (SW), on three elevation levels from the highest single trees to closed canopy forest and analysed frost ring occurrence and their seasonal timing. Frost ring formation at all exposure-elevation combinations was common and mainly concentrated in the early part of the growing season. The age until trees record frost rings was equally similar (until about 35 years) on both slopes and different elevational levels with the exception of the climatically harshest site, the highest elevation on the NE slope. While we could not deduce a direct, easily identifiable climatic driver for the formation of frost rings, our analysis shows high potential to disentangle the complex interplay between climate, site condition and tree growth in mountainous ecosystems.