The present study deals with the effect of forest drainage on some quality factors of brook waters. Under study were several brooks in the basin of the Kiiminkijoki River as well as its main tributary, the Nuorittajoki River. These are located in Northern Finland and belong to the international water program Project Aqua.
The following values were determined for the water samples: pH, electric conductivity, colour, concentration of suspended solids., NO2, NO3, and NH4 nitrogen concentrations, dissolved and total phosphorus, and Ca, Mg, K and Fe concentrations. Water quality in the brooks was monitored prior to and after ditching. A statistically significant change was noted in colour, in the concentration of suspended solids, in the NH4 concentration and in some brooks also in the pH value and in the total phosphorus, K, and Fe concentrations.
The PDF includes a summary in English.
The study describes the relationships between a method developed by the author for the calculation of the profitability of forest drainage and the old biological method. The calculations were based on empirical data, and they aimed at finding out the effect of a variation in the profitability limit in the areas in hectares to be drained, and on the profitability of drainage. The study deals also with the profitability of present-day drainage activities. The results showed that the profitability coefficient (the ratio between the discounted increase in returns and the costs of drainage) averages 3.04 for the whole country. The corresponding value was 5.68 for Southern Finland, 3.19 for Central Finland and 1.67 for Northern Finland.
The PDF includes a summary in English.
The changed in size and shape of ditches made by draining plows and tractor diggers were followed over a one-year period after the draining in four different peatland types. The material consists of 51 ditches made with each method in dwarf-shrub pine bog, herb-rich spruce swamp, in herb-rich sedge bog and sedge pine bog. The measurements were made immediately after the digging, and one month and a year later.
Ditches made by plowing and surrounded by peat became shallower quickly during the first 2–3 days after plowing due to the pressure of the surrounding peat. Ditches made with tractor diggers did not become shallower as fast, and their bottom did not widen to the same extent than plown ditched. During the first year, machine-made ditches change in a same way as handmade ditches, especially when compared to ditches made by tractor digger.
Immediately after digging the ditches made by tractor digger were 10 cm deeper and 0.13 m3 larger than plown ditches. One year later the values were 7,5 cm and 0.09 m3, respectively. Plown ditches made in the peat were 14.4 cm deeper than ditches that penetrated into the subsoil, for tractor digger the value was 13.2 cm. Ditches made with a tractor digger were deeper than plown ditches both in soils with deep and shallow peat layer.
The changes were largest and fastest in the wettest peatland type herb-rich sedge bog. In herb-rich spruce swamps, which have a shallow peat layer, the shallower plown ditches kept their form better than ditches dug by tractor digger.
The PDF includes a summary in English.
The study attempts to establish to what extent the present regional allocation of the forest improvement subsidies equalize the profitability of forest drainage in Finland. The benefit/cost ratio has been used to describe the regional variation of the profitability
The study revealed that the forest improvement subsidies granted in 1968, even the highest possible subsidies, did not equalize the profitability of forest drainage. According to the results, the northern regions are at a disadvantage compared to the southern parts of the country. To fully equalize the profitability of forest drainage the average subsidies granted in 1968 should have been raised in the second financing zone from 22 to 32%, in the third zone from 32 to 60%, and in the fourth, northernmost zone from 43 to 86%. The study also suggests that the boundary lines of the financing zones should run, at least in Central and Northern Finland, from southeast to northwest instead from east to west, as it is now.
The PDF includes a summary in English.
About one third of the land area of Finland is covered by peatlands, furthermore, some mineral soils are troubled by excess water. Due to the prevalence of peatlands, forest drainage has been the most important form of forest improvement work. Consequently, peatlands have been an extensively studied topic within forest sciences in Finland. This paper gives a review on the central research subjects in science of peatlands, introducing little less than a hundred of the hundreds of publications published in the field. The author describes in more detail research on the formation and area of peatlands, peatland types and their suitability for forest draining, site factors on peatlands, techniques of forest ditching and the management of peatland forests.
The PDF includes a summary in Finnish.
Silva Fennica Issue 80 includes presentations held in 1952 in the 7th professional development courses, arranged for foresters working in the Forest Service. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes the factors that limit growth of trees in peatlands, and principles of draining of peatlands.
Growth capacity of peatlands after draining depends largely on quality of the surface peat. The future growth capacity can be determined with considerable accuracy by the vegetation of the peatland. The aim of this study was to draw guidelines to identify the fertility of a peatland and its potential for draining based on its vegetation.
Certain species and plant associations were identified to describe the fertility of different peatland types. Brown mosses indicate an abundant nutrient content of the site, certain herbs moderately abundant nutrient content, sedges (Carex sp.) moderate nutrient content, shrubs poor nutrient content and vegetation indicating an oligotrophic peatland indicates excessively poor nutrient content. The article includes detailed descriptions of the vegetation of different peatland types.
Supplementary features, such as thin peat, flooded parts or abundance of Spangnum fuscum can be used as additional indications to determine the drainability of the site. The article describes an identification tool to determine the drainability of a peatland based on vegetation and the supplementary features of the peatland.
The article includes a summary in English.
Silva Fennica issue 42 includes presentations held in professional development courses, arranged for foresters working in public administration in 1936. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service
This presentation describes the effects of draining of peatlands on water management in the peatland and the surrounding area.
Silva Fennica Issue 39 includes presentations held in professional development courses in 1935 that were arranged for foresters working in public administration. The presentations focus on practical issues in forest management and administration, especially in regional level.
This presentation discusses the use of peatlands in agriculture and peatlands' suitability to farming.
Silva Fennica Issue 39 includes presentations held in professional development courses in 1935 that were arranged for foresters working in public administration. The presentations focus on practical issues in forest management and administration, especially in regional level.
This presentation gives guidelines for draining of peatlands.
Silva Fennica Issue 39 includes presentations held in professional development courses in 1935 that were arranged for foresters working in public administration. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes different kinds of peatlands and their suitability to draining and forestry.
Systematic draining of peatlands begun in the state forests of Finland in 1908. It was considered necessary, because 41.4% of the state forests, 5.6 million hectares, consist of peatlands. Of the peatlands, 1.9 million hectares was estimated to be suitable for draining. Furthermore, paludification still continues in the forest lands. By the year 1926, a total of 52,275 hectares of peatland had been drained in the state lands.
Certain factors decide whether the peatland is suitable for draining: the growth increment capacity after draining, technical difficulties in draining, and difficulties in regeneration. Peatland type indicates the growth capacity of the drained peatland. The peatland should turn at least to Vaccinum forest site type or better type to be worth of draining. If the peat layer is thin, the quality of peat is an important deciding factor. The peatland may also be too expensive to drain due to, for instance, long ditches, main ditches difficult to dig, small inclination, uneven surface, and deep cavities at the bottom. The younger the trees of the stand, the faster the growth of the stand revives. The peatlands usually regenerate naturally provided there is sufficient seed trees, and there is seldom need for artificial regeneration.
The PDF includes a summary in English.
The Finnish forest industry is undergoing a vast expansion, which has raised questions of forest balance. This paper studies the possibilities to increase the amount available timber by means of forest drainage. About third of the Finnish land area is peatlands. The calculations of the investigation are based on Forestry Board districts. Based on earlier studies, there is estimated to be 3,042,000 ha of true drainable swamps, 973,000 ha of poor swamps, 1,381,000 ha of uplands in need of drainage, and 1,205,000 ha of drained peatlands. Therefore, the area of drainable and drained lands totals 6,6 million ha, and requirement of forest drainage 5,4 million ha. The drainage hardly reaches this extent, however. It can be assumed that part of the poor swamps is uneconomical to drain. In addition, a half of the paludified forest land will probably not be drained. Thus, it can be estimated that the area to be drained in the future is about 5 million ha. It seems possible that this area could be drained within about 50 years with the present draining capacity.
Draining of all objects of forests would increase the annual increment of our forests, in time, by about 10.5 million m3. This would signify an increase of 23% compared to the present growth of the forests. The increase in the growth consists mainly of softwood: 16% is birch, and the remaining 84% almost equally of Scots pine and Norway spruce. The increase of growth is relatively slow. Depending on the rate of the drainage program, the mean increase of growth will be reached in about 25–35 years. The increase in removal indicated by the increase in the mean increment will be reached in only 50–60 years.
The PDF includes a summary in English.
The article deals with forest ditches dug by manual labour in drained peatlands in Central and Southern Finland, ranging in age from 16 to 25 years. The ditches have been allowed to develop in a natural state. A total 1,160 of randomly selected sample plots were studied.
The results show that the originally dug ditch depth has not been the decisive factor from the viewpoint of maintaining the ditch repair. Ditches dug in thick peat layer have maintained their repair better than those dug in thin peat layer. Apparently, the influencing factor is the type of soil, to a certain extent parallel to the thickness of peat layer. In ditches dug mainly in mineral soil, the type of soil has essentially contributed to maintaining the ditch repair. Ditches in coarse-grained soils maintained a better repair than those in fine-grained soils. Also, the steeper the gradient of the ditch the better the ditch repair has been maintained. There was no relationship between the thickness of peat and the filling up of ditch bottom, because of the influence of mineral soil. Filling up of a ditch seems to be mainly due to the sinking of peat. The filling up of ditch bottom was more pronounced in clay-silt soil than in other soil types. The filling up of ditch bottom by varying gradient is due to the fact that with a small gradient the speed of water is so slow as to permit the soil particles to sink to the bottom. Another factor affecting filling up of the ditches is wetness of the peatland. Deepening of ditches happens mainly through erosion, if the gradient is large enough. The study suggests that a 50-m spacing with about 60-cm ditchc depth would be most profitable.
The PDF includes a summary in English.
One of the factors that influence if a peatland is suitable for draining is the time required until fellings bring income, even if it the discounting calculations has uncertainties. This article discusses the factors that affect the economic profitability of draining peatlands.
The profitability of draining increases the more the yield or increase of the yield exceeds the costs of draining. Estimation of the yield is in Finland based on the peatland type, which reflects production capacity of the site. In addition, the growing stock of the site can vary in peatlands within same peatland type. The density and size of ditches affects the draining costs. Thus, productivity based on a peatland type alone does not describe well enough the drainability of a peatland area.
In Finnish classification of site quality of the peatlands, the treeless bogs and rich fens have been given too high a class compared to well stocked spruce swamps and pine swamps. Also, the drainability of two spruce and pine swamps can differ markedly in economic point of view if the tree’s quality, volume and ability to recover differ. The article discusses different methods to assess profitability of draining that have been descibed in the previous studies. It is suggested that the classification of peatlands by their drainability should be more selective.
The PDF includes a summary in German.
According to the theory of peatland types, particular peatland types, after sufficient drainage, change into certain forest types. It has been found, that the range of forest types in peatlands in different stages of draining is as large as on mineral soil; and comprise Cladina, Calluna, Vaccinium, Myrtillus Oxalis-myrtillus and grove types. Poor peatland types change into poor forest types, better for better types. However, a Swedish scientist Mellin suggested that after effective drainage especially oligotrophic bogs, when well drained, change usually into Myrtillus type.
The different conclusions are due to the fact that the same bog type may develop into different forest types according to the effectiveness and duration of the drainage. Greater the decay of the peat bog layer, the more exacting is the type of vegetation which appears. Bog types of classes V, IV and III (Finnish classification of site quality) change into a Myrtillus type, as do the poorer peatland types of class II. The types vary, however, in their economical drainage value. The fact that bogs which in their natural stage are clearly different in their site quality change after through drainage into the same forest type, is explained by the chemical quality of the peat. However, class I and the best types of class II bogs change into better forest types because they as eutropchic bogs are richer in nitrogen and lime. This difference persists despite of effective draining.
It has been shown that the development of eutrophic peatland types at the forest type stage also differs clearly from the development of oligotrophic peatland types. The Finnish classification of drainage value shows correctly the relative drainability when using normal spacing of ditches. The notes on forest types on mineral soil should, however, be replaced by corresponding notes on the transitive types between bog and forest types.
The PDF includes a summary in Swedish and English.
The article introduces methods that can be used to calculate economic profitability of draining of peatlands, and discusses their advantages and weaknesses. The time span from draining of a peatland and the future income is usually decades, which makes it difficult to assess profitability for the investment. For instance, income from future fellings depends on chosen rotation time, and price of timber that can fluctuate strongly.
When calculating the profitability, the drained area can be treated as a separate unit of account or as a part of the forest holding. In the first case, several methods can be used. First, yield in terms of value is a suitable method only if the peatland has no existing forest. Second, annual yield of a drained peatland and peatland in natural state can be compared. In this case yield can be defined in several ways. Third method uses value increment of the growing stock. Fourth method estimates value of increment for both the growing stock and land. Fifth method is based on present value of the future felling income, and sixth on actual value of the growing stock and yield in terms of value.
The PDF includes a summary in German.
Approximately 320,000 hectares of peatlands and paludified lands had been drained for agriculture and forestry purposes in Finland by 1920. The ditch network was not optimal in the early drained areas, and the condition of the ditches declined over time. In this study, the condition of drainage system, and the natural processes that affect them, was inspected in 18 drained peatlands.
Several processes can reduce of the size of the ditches. The process of crumbling of soil in the sides of the diches can last up to three years after the draining. Erosion of the main drains, caused by water flow can, however, continue longer. The ditches also sink when the peat dries. Soil frost can affect the ditches, but as the vegetation grows its effect gradually decreases. The vegetation that grows in the ditches may finally block the ditch completely.
The PDF includes a summary in English.
Peatlands amount to more than a third of the land area of Finland. The article includes a review on the peatland complexes and types, their distribution in Finland and how different peatland types suit for draining. Finnish peatlands have typically relatively shallow peat layer, which influences how they suit for agricultural lands or forestry. Systematic draining of peatlands has been practiced since 1908 in the state forests. In 1908-1919 Metsähallitus (Forest Service) drained slightly over 200,000 hectares of peatlands, and the forest companies are estimated to have drained about similar area. An estimate of how big proportion of the peatlands would be worth draining is deduced, based on existing statistics of the state lands, and on a line survey. In the state lands 35% of the peatlands, about 2 million hectares, are worth draining. If an estimate of the figures of private lands is added, of the total of 5 million hectares of peatlands in Finland about 54% is suitable for draining.
The PDF includes a summary in German.
The study is a part in a more comprehensive series of investigations into the profitability of forest improvement measures. The present paper describes a new method for calculation of the suitability of various peatlands for forest drainage. According to this method, the net profit is calculated as the difference between the gross profit and the costs, and the profitability coefficient, as the ratio between the gross profit and the costs. The most important factors used for calculation of the gross profit and the costs are as follows: the site quality index, the volume of the tree stand capable of development at the time of draining, the temperature sum and the stumpage development at the time of draining, the temperature sum and the stumpage price. For use in the field, simplified auxliary tables have been worked out.
The PDF includes a summary in English.
In Finland The Central Forestry Board Tapio conducts forest drainage operations on swamps owned mainly by private individuals. This drainage is almost totally financed by the Government either as loans or subsidies. The local contractors have left bids about new forest drainage projects, and the best bid has won the contract. The trend of the average price for forest drains has been declining during the last 11 years although digging costs have increased. The aim of this study was (1) to explain the regional price variation of forest drains made by tractor-diggers and (2) to describe competition among tractor-digger contractors and to measure its effect on prices.
Correlation and regression analyses support the hypothesis that competition among tractor-digger contractors has decreased forest drain prices, especially in 1967. In the course of the last two years this competition effect has been lessening. The most significant other variables explaining price variations were the proportion of winter drainage, length of drainage work done for each participant in the project, and density of drains.
The PDF includes a summary in English.
The aim of the study was to determine how the spacing of drains affects the economic results of forest drainage projects. On the basis of empirical material consisting of 411 sample plots, it is presented marginal cost curves showing how many meters more of drains it is needed to increase the value of stock, 35 years after the drainage, by a value equivalent of one cu.m of coniferous pulpwood. Results indicate that wider spacings ought to be used on poor sites, on sloping swamps, and in the north.
The PDF includes a summary in English.