Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Terje Gobakken

Category : Research article

article id 23023, category Research article
Lennart Noordermeer, Hans Ole Ørka, Terje Gobakken. (2023). Imputing stem frequency distributions using harvester and airborne laser scanner data: a comparison of inventory approaches. Silva Fennica vol. 57 no. 3 article id 23023. https://doi.org/10.14214/sf.23023
Keywords: forest inventory; airborne laser scanning; harvester data; inventory approaches
Highlights: We imputed stem frequency distributions using harvester reference data and predictor variables computed from airborne laser scanner data.; Stand-level distributions of stem diameter, tree height, volume, and sawn wood volume; (Enhanced) area-based and semi-individual tree crown approaches outperformed the individual tree crown method.
Abstract | Full text in HTML | Full text in PDF | Author Info
Stem frequency distributions provide useful information for pre-harvest planning. We compared four inventory approaches for imputing stem frequency distributions using harvester data as reference data and predictor variables computed from airborne laser scanner (ALS) data. We imputed distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the accuracies of imputed distributions using a variant of the Reynold’s error index, obtaining the best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and EABA inventory approaches were significantly better than accuracies obtained using the ITC approach. The forest attribute, inventory approach, stand size and the laser pulse density had significant effects on the accuracies of imputed frequency distributions, however the ALS delay and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS data for imputing stem frequency distributions in pre-harvest inventories.
  • Noordermeer, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-8840-0345 E-mail: lennart.noordermeer@nmbu.no (email)
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-7492-8608 E-mail: hans-ole.orka@nmbu.no
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
article id 23019, category Research article
Victor F. Strîmbu, Tron Eid, Terje Gobakken. (2023). A stand level scenario model for the Norwegian forestry – a case study on forest management under climate change. Silva Fennica vol. 57 no. 2 article id 23019. https://doi.org/10.14214/sf.23019
Keywords: forest planning; carbon balance; climate change mitigation; forest stand simulator
Highlights: GAYA 2.0: a new scenario analysis model focusing on forest carbon fluxes; Carbon sequestration potential estimated at regional level; GAYA 2.0 may be used to estimate the costs of obtaining carbon benefits by adapting the forest management.
Abstract | Full text in HTML | Full text in PDF | Author Info
Carbon sequestration and income generation are competing objectives in modern forest management. The climate commitments of many countries depend on forests as carbon sinks which must be quantified, monitored, and projected into the future. For projections we need tools to model forest development and perform scenario analyses to assess future carbon sequestration potentials under different management regimes, the expected net present value of such regimes, and possible impacts of climate change. We propose a scenario analysis software tool (GAYA 2.0) that can assist in answering these types of questions using stand level simulations, detailed carbon flow models and an optimizer. This paper has two objectives: (1) to describe GAYA 2.0, and (2) demonstrate its potential in a case study where we analyze the forest carbon balance over a region in Norway based on national forest inventory sample plots. The tool was used to map the optimality front between the carbon benefit and net present value. We observed changes in net present value for different levels of carbon benefit as well as changes in optimal management strategies. We predicted future changes in several forest carbon pools as well as albedo and illustrated the impact of gradual increase in forest productivity (i.e., due to climate warming). Having been updated and modernized from its previous version with increased attention to forest carbon and energy fluxes, GAYA 2.0 is an effective tool that offers multiple opportunities to perform various types of scenario analyses in forest management.
  • Strîmbu, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-0588-2036 E-mail: victor.strimbu@nmbu.no (email)
  • Eid, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, NO-1432 Ås, Norway E-mail: tron.eid@nmbu.no
  • Gobakken, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0001-5534-049X E-mail: terje.gobakken@nmbu.no
article id 10732, category Research article
Ana Aza, A. Maarit I. Kallio, Timo Pukkala, Ari Hietala, Terje Gobakken, Rasmus Astrup. (2022). Species selection in areas subjected to risk of root and butt rot: applying Precision forestry in Norway. Silva Fennica vol. 56 no. 3 article id 10732. https://doi.org/10.14214/sf.10732
Keywords: Norway spruce; Scots pine; growth modelling; precision forestry; root and butt rot severity; tree species selection
Highlights: We present the best species to plant on previously spruce-dominated sites with different site indexes and rot levels; We recommend planting Norway spruce on low-rot sites, Scots pine on higher-rot sites, and allowing natural regeneration on low site indexes; We demonstrate the Precision forestry method for determining the optimal tree species in heterogenous stands; In the case study, the method increased net present value by approximately 6% on average.
Abstract | Full text in HTML | Full text in PDF | Author Info

Norway’s most common tree species, Picea abies (L.) Karst. (Norway spruce), is often infected with Heterobasidion parviporum Niemelä & Korhonen and Heterobasidion annosum (Fr.) Bref.. Because Pinus sylvestris L. (Scots pine) is less susceptible to rot, it is worth considering if converting rot-infested spruce stands to pine improves economic performance. We examined the economically optimal choice between planting Norway spruce and Scots pine for previously spruce-dominated clear-cut sites of different site indexes with initial rot levels varying from 0% to 100% of stumps on the site. While it is optimal to continue to plant Norway spruce in regions with low rot levels, shifting to Scots pine pays off when rot levels get higher. The threshold rot level for changing from Norway spruce to Scots pine increases with the site index. We present a case study demonstrating a practical method (“Precision forestry”) for determining the tree species in a stand at the pixel level when the stand is heterogeneous both in site indexes and rot levels. This method is consistent with the concept of Precision forestry, which aims to plan and execute site-specific forest management activities to improve the quality of wood products while minimising waste, increasing profits, and maintaining environmental quality. The material for the study includes data on rot levels and site indexes in 71 clear-cut stands. Compared to planting the entire stand with a single species, pixel-level optimised species selection increases the net present value in almost every stand, with average increase of approximately 6%.

  • Aza, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, PO Box 5003, NO-1432, Ås, Norway ORCID https://orcid.org/0000-0002-6416-6697 E-mail: anfe@nmbu.no (email)
  • Kallio, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, PO Box 5003, NO-1432, Ås, Norway E-mail: maarit.kallio@nmbu.no
  • Pukkala, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: timo.pukkala@uef.fi
  • Hietala, Norwegian Institute of Bioeconomy Research, PO Box 115, NO-1431 Ås, Norway E-mail: ari.hietala@nibio.no
  • Gobakken, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, PO Box 5003, NO-1432, Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Astrup, Norwegian Institute of Bioeconomy Research, PO Box 115, NO-1431 Ås, Norway E-mail: rasmus.astrup@nibio.no
article id 10695, category Research article
Ana de Lera Garrido, Terje Gobakken, Hans Ole Ørka, Erik Næsset, Ole M. Bollandsås. (2022). Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models. Silva Fennica vol. 56 no. 2 article id 10695. https://doi.org/10.14214/sf.10695
Keywords: forest inventory; LIDAR; calibration; area-based approach; spatial transferability; temporal transferability
Highlights: Three approaches to calibrate temporal and spatial external models using field observations from different numbers of local plots are presented; Calibration produced satisfactory results, reducing the mean difference between estimated and observed values in 89% of all trials; Using few calibration plots, ratio-calibration provided the lowest mean difference; Calibration using 20 plots gave comparable results to a local forest inventory.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest management inventories assisted by airborne laser scanner data rely on predictive models traditionally constructed and applied based on data from the same area of interest. However, forest attributes can also be predicted using models constructed with data external to where the model is applied, both temporal and geographically. When external models are used, many factors influence the predictions’ accuracy and may cause systematic errors. In this study, volume, stem number, and dominant height were estimated using external model predictions calibrated using a reduced number of up-to-date local field plots or using predictions from reparametrized models. We assessed and compared the performance of three different calibration approaches for both temporally and spatially external models. Each of the three approaches was applied with different numbers of calibration plots in a simulation, and the accuracy was assessed using independent validation data. The primary findings were that local calibration reduced the relative mean difference in 89% of the cases, and the relative root mean squared error in 56% of the cases. Differences between application of temporally or spatially external models were minor, and when the number of local plots was small, calibration approaches based on the observed prediction errors on the up-to-date local field plots were better than using the reparametrized models. The results showed that the estimates resulting from calibrating external models with 20 plots were at the same level of accuracy as those resulting from a new inventory.

  • de Lera Garrido, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ana.de.lera@nmbu.no (email)
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: hans-ole.orka@nmbu.no
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Bollandsås, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ole.martin.bollandsas@nmbu.no
article id 10606, category Research article
Benjamin Allen, Michele Dalponte, Ari M. Hietala, Hans Ole Ørka, Erik Næsset, Terje Gobakken. (2022). Detection of Root, Butt, and Stem Rot presence in Norway spruce with hyperspectral imagery. Silva Fennica vol. 56 no. 2 article id 10606. https://doi.org/10.14214/sf.10606
Keywords: Picea abies; Heterobasidion; remote sensing; root rot; hyperspectral imagery; forest pathology
Highlights: Hyperspectral imagery can be used to detect Root, Butt, and Stem Rot in Picea abies with moderate accuracy; Spectral derivatives improved classification accuracy; Bands around 540, 700, and 1650 nm tended to be the most important for classification models.
Abstract | Full text in HTML | Full text in PDF | Author Info

Pathogenic wood decay fungi such as species of Heterobasidion are some of the most serious forest pathogens in Europe, causing rot of tree boles and loss of growth, with estimated economic losses of eight hundred million euros per year. In conifers with low resinous heartwood such as species of Picea and Abies, these fungi are commonly confined to heartwood and thus external infection signs on the bark or foliage of trees are normally absent. Consequently, determining the extent of disease presence in a forest stand with field surveys is not practical for guiding forest management decisions such as optimal rotation time. Remote sensing technologies such as airborne laser scanning and aerial imagery are already used to reduce the reliance on fieldwork in forest inventories. This study aimed to use remote sensing to detect rot in spruce (Picea abies L. Karst.) forests in Norway. An airborne hyperspectral imager provided information for classifying the presence or absence of rot in a single-tree-based framework. Ground reference data showing the presence of rot were collected by harvest machine operators during the harvest of forest stands. Random forest and support vector machine algorithms were used to classify the presence and absence of rot. Results indicate a 64% overall classification accuracy for presence-absence classification of rot, although additional work remains to make the classifications usable for practical forest management.

  • Allen, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: benjamin.allen@nmbu.no (email)
  • Dalponte, Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 San Michele all’Adige (TN), Italy E-mail: michele.dalponte@fmach.it
  • Hietala, Norwegian Institute of Bioeconomy Research, Innocamp Steinkjer, Skolegata 22, NO-7713 Steinkjer, Norway E-mail: Ari.Hietala@nibio.no
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: hans-ole.orka@nmbu.no
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
article id 10608, category Research article
Lennart Noordermeer, Erik Næsset, Terje Gobakken. (2022). Effects of harvester positioning errors on merchantable timber volume predicted and estimated from airborne laser scanner data in mature Norway spruce forests. Silva Fennica vol. 56 no. 1 article id 10608. https://doi.org/10.14214/sf.10608
Keywords: forest inventory; ALS; forest harvester; GNSS; precision forestry
Highlights: Timber volume was estimated using harvester and airborne laser scanner (ALS) data acquired with different scanners over eight years; The year of ALS acquisition did not have a significant effect on errors in timber volume estimates; Accuracies of timber volume estimates decreased significantly with increasing levels of positioning error; When using inaccurately positioned harvester data, larger grid cells are beneficial.
Abstract | Full text in HTML | Full text in PDF | Author Info

Newly developed positioning systems in cut-to-length harvesters enable georeferencing of individual trees with submeter accuracy. Together with detailed tree measurements recorded during processing of the tree, georeferenced harvester data are emerging as a valuable tool for forest inventory. Previous studies have shown that harvester data can be linked to airborne laser scanner (ALS) data to estimate a range of forest attributes. However, there is little empirical evidence of the benefits of improved positioning accuracy of harvester data. The two objectives of this study were to (1) assess the accuracy of timber volume estimation using harvester data and ALS data acquired with different scanners over multiple years and (2) assess how harvester positioning errors affect merchantable timber volume predicted and estimated from ALS data. We used harvester data from 33 commercial logging operations, comprising 93 731 harvested stems georeferenced with sub-meter accuracy, as plot-level training data in an enhanced area-based inventory approach. By randomly altering the tree positions in Monte Carlo simulations, we assessed how prediction and estimation errors were influenced by different combinations of simulated positioning errors and grid cell sizes. We simulated positioning errors of 1, 2, …, 15 m and used grid cells of 100, 200, 300 and 400 m2. Values of root mean square errors obtained for cell-level predictions of timber volume differed significantly for the different grid cell sizes. The use of larger grid cells resulted in a greater accuracy of timber volume predictions, which were also less affected by positioning errors. Accuracies of timber volume estimates at logging operation level decreased significantly with increasing levels of positioning error. The results highlight the benefit of accurate positioning of harvester data in forest inventory applications. Further, the results indicate that when estimating timber volume from ALS data and inaccurately positioned harvester data, larger grid cells are beneficial.

  • Noordermeer, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, NO-1432 Ås, Norway E-mail: lennart.noordermeer@nmbu.no (email)
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
article id 10244, category Research article
Hans Ole Ørka, Endre H. Hansen, Michele Dalponte, Terje Gobakken, Erik Næsset. (2021). Large-area inventory of species composition using airborne laser scanning and hyperspectral data. Silva Fennica vol. 55 no. 4 article id 10244. https://doi.org/10.14214/sf.10244
Keywords: airborne laser scanning; Dirichlet regression; hyperspectral; species proportions; species-specific forest inventory
Highlights: A methodology for using hyperspectral data in the area-based approach is presented; Hyperspectral data produced satisfactory results for species composition in 90% of the cases; Parametric Dirichlet regression is an applicable method to predicting species proportions; Normalization and a tree-based selection of pixels provided the overall best results; Both visible to near-infrared and shortwave-infrared sensors gave acceptable results.
Abstract | Full text in HTML | Full text in PDF | Author Info

Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index.

  • Ørka, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-7492-8608 E-mail: hans-ole.orka@nmbu.no (email)
  • Hansen, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway; Norwegian Forest Extension Institute, Honnevegen 60, NO-2836 Biri, Norway ORCID https://orcid.org/0000-0001-5174-4497 E-mail: eh@skogkurs.no
  • Dalponte, Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy ORCID https://orcid.org/0000-0001-9850-8985 E-mail: michele.dalponte@fmach.it
  • Gobakken, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0001-5534-049X E-mail: terje.gobakken@nmbu.no
  • Næsset, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
article id 10272, category Research article
Ana de Lera Garrido, Terje Gobakken, Hans Ole Ørka, Erik Næsset, Ole M. Bollandsås. (2020). Reuse of field data in ALS-assisted forest inventory. Silva Fennica vol. 54 no. 5 article id 10272. https://doi.org/10.14214/sf.10272
Keywords: airborne laser scanning; data reuse; temporal model transferability
Highlights: Six biophysical forest attributes were estimated for small stands without using up-to-date field data; The approaches included reused model relationships and forecasted field data; The accuracy of height estimates was comparable with the accuracy of an ordinary forest inventory with up-to-date field- and ALS data; Both approaches tended to produce estimates systematically different from the ground reference.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest inventories assisted by wall-to-wall airborne laser scanning (ALS), have become common practice in many countries. One major cost component in these inventories is the measurement of field sample plots used for constructing models relating biophysical forest attributes to metrics derived from ALS data. In areas where ALS-assisted forest inventories are planned, and in which the previous inventories were performed with the same method, reusing previously acquired field data can potentially reduce costs, either by (1) temporally transferring previously constructed models or (2) projecting field reference data using growth models that can serve as field reference data for model construction with up-to-date ALS data. In this study, we analyzed these two approaches of reusing field data acquired 15 years prior to the current ALS acquisition to estimate six up-to-date forest attributes (dominant tree height, mean tree height, stem number, stand basal area, volume, and aboveground biomass). Both approaches were evaluated within small stands with sizes of approximately 0.37 ha, assessing differences between estimates and ground reference values. The estimates were also compared to results from an up-to-date forest inventory relying on concurrent field- and ALS data. The results showed that even though the reuse of historical information has some potential and could be beneficial for forest inventories, systematic errors may appear prominent and need to be overcome to use it operationally. Our study showed systematic trends towards the overestimation of lower-range ground references and underestimation of the upper-range ground references.

  • de Lera Garrido, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ana.maria.lera.garrido@nmbu.no (email)
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: hans-ole.orka@nmbu.no
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Bollandsås, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ole.martin.bollandsas@nmbu.no
article id 10075, category Research article
Matti Maltamo, Marius Hauglin, Erik Naesset, Terje Gobakken. (2019). Estimating stand level stem diameter distribution utilizing harvester data and airborne laser scanning. Silva Fennica vol. 53 no. 3 article id 10075. https://doi.org/10.14214/sf.10075
Keywords: LIDAR; cut-to length harvester; GPS; merchantable volume; tree list
Highlights: Tree level-positioned harvester data were successfully used as plot-level training data for k-nearest neighbor stem diameter distribution modelling applying airborne laser scanning information as predictor variables; Stand-level validation showed that merchantable volume of total tree stock could be estimated with RMSE value of about 9%; The fit of the stem diameter distribution assessed by a variant of Reynold’s error index showed values smaller than 0.2; The most accurate results were obtained for the training plot sizes of 200 m2 and 400 m2.
Abstract | Full text in HTML | Full text in PDF | Author Info

Accurately positioned single-tree data obtained from a cut-to-length harvester were used as training harvester plot data for k-nearest neighbor (k-nn) stem diameter distribution modelling applying airborne laser scanning (ALS) information as predictor variables. Part of the same harvester data were also used for stand-level validation where the validation units were stands including all the harvester plots on a systematic grid located within each individual stand. In the validation all harvester plots within a stand and also the neighboring stands located closer than 200 m were excluded from the training data when predicting for plots of a particular stand. We further compared different training harvester plot sizes, namely 200 m2, 400 m2, 900 m2 and 1600 m2. Due to this setup the number of considered stands and the areas within the stands varied between the different harvester plot sizes. Our data were from final fellings in Akershus County in Norway and consisted of altogether 47 stands dominated by Norway spruce. We also had ALS data from the area. We concentrated on estimating characteristics of Norway spruce but due to the k-nn approach, species-wise estimates and stand totals as a sum over species were considered as well. The results showed that in the most accurate cases stand-level merchantable total volume could be estimated with RMSE values smaller than 9% of the mean. This value can be considered as highly accurate. Also the fit of the stem diameter distribution assessed by a variant of Reynold’s error index showed values smaller than 0.2 which are superior to those found in the previous studies. The differences between harvester plot sizes were generally small, showing most accurate results for the training harvester plot sizes 200 m2 and 400 m2.

  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu E-mail: matti.maltamo@uef.fi (email)
  • Hauglin, Norwegian Institute of Bioeconomy Research, Division of Forest and Forest Resources, P.O. Box 115, 1431 Ås, Norway E-mail: marius.hauglin@nibio.no
  • Naesset, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, 1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Gobakken, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, 1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
article id 9923, category Research article
Annika Kangas, Terje Gobakken, Stefano Puliti, Marius Hauglin, Erik Naesset. (2018). Value of airborne laser scanning and digital aerial photogrammetry data in forest decision making. Silva Fennica vol. 52 no. 1 article id 9923. https://doi.org/10.14214/sf.9923
Keywords: forest inventory; value of information; uncertainty; remote sensing; cost-plus-loss; data quality
Highlights: Airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) are nearly equally valuable for harvest scheduling decisions even though ALS data is more precise; Large underestimates of stand volume are most dangerous errors for forest owner because of missed cutting probabilities; Relative RMSE of stand volume and the mean volume in a test area explain 77% of the variation between the expected losses due to errors in the data in the published studies; Increasing the relative RMSE of volume by 1 unit, increased the losses in average by 4.4 € ha–1.
Abstract | Full text in HTML | Full text in PDF | Author Info

Airborne laser scanning (ALS) has been the main method for acquiring data for forest management planning in Finland and Norway in the last decade. Recently, digital aerial photogrammetry (DAP) has provided an interesting alternative, as the accuracy of stand-based estimates has been quite close to that of ALS while the costs are markedly smaller. Thus, it is important to know if the better accuracy of ALS is worth the higher costs for forest owners. In many recent studies, the value of forest inventory information in the harvest scheduling has been examined, for instance through cost-plus-loss analysis. Cost-plus-loss means that the quality of the data is accounted for in monetary terms through calculating the losses due to errors in the data in the forest management planning context. These costs are added to the inventory costs. In the current study, we compared the losses of ALS and DAP at plot level. According to the results, the data produced using DAP are as good as data produced using ALS from a decision making point of view, even though ALS is slightly more accurate. ALS is better than DAP only if the data will be used for more than 15 years before acquiring new data, and even then the difference is quite small. Thus, the increased errors in DAP do not significantly affect the results from a decision making point of view, and ALS and DAP data can be equally well recommended to the forest owners for management planning. The decision of which data to acquire, can thus be made based on the availability of the data on first hand and the costs of acquiring it on the second hand.

  • Kangas, Natural Resources Institute Finland (Luke), Bioeconomy and environment, P.O. Box 68, FI-80170 Joensuu, Finland E-mail: annika.kangas@luke.fi (email)
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Puliti, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: stefano.puliti@nibio.no
  • Hauglin, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: marius.hauglin@nmbu.no
  • Naesset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
article id 1347, category Research article
Paulo Borges, Even Bergseng, Tron Eid, Terje Gobakken. (2015). Impact of maximum opening area constraints on profitability and biomass availability in forestry – a large, real world case. Silva Fennica vol. 49 no. 5 article id 1347. https://doi.org/10.14214/sf.1347
Keywords: bioenergy; forest management planning; mixed integer programming; area restriction model; green-up
Highlights: We solved a large and real world near city forestry problem; The inclusion of maximum open area constraints caused 7.0% loss in NPV; Solution value at maximum deviated 0.01% from the true optimum value; The annual energy supply of 20–30 GWh estimated from harvest residues could provide a small, but stable supply of energy to the municipality.
Abstract | Full text in HTML | Full text in PDF | Author Info

The nature areas surrounding the capital of Norway (Oslomarka), comprising 1 700 km2 of forest land, are the recreational home turf for a population of 1.2 mill. people. These areas are highly valuable, not only for recreational purposes and biodiversity, but also for commercial activities. To assess the impacts of the challenges that Oslo municipality forest face in their management, we developed four optimization problems with different levels of management constraints. The constraints consider control of harvest level, guarantee of minimum old-growth forest area and maximum open area after final harvest. For the latter, to date, no appropriate analyses quantifying the impact of such a constraint on economy and biomass production have been carried out in Norway. The problem solved is large due to both the number of stands and number of treatment schedules. However, the model applied demonstrated its relevance for solving large problems involving maximum opening areas. The inclusion of maximum open area constraints caused 7.0% loss in NPV compared to the business as usual case with controlled harvest volume and minimum old-growth area. The estimated supply of 20-30 GWh annual energy from harvest residues could provide a small, but stable supply of energy to the municipality.

  • Borges, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway E-mail: paulo.borges@nmbu.no (email)
  • Bergseng, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway E-mail: even.bergseng@nmbu.no
  • Eid, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway E-mail: tron.eid@nmbu.no
  • Gobakken, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway E-mail: terje.gobakken@nmbu.no
article id 943, category Research article
Terje Gobakken, Lauri Korhonen, Erik Næsset. (2013). Laser-assisted selection of field plots for an area-based forest inventory. Silva Fennica vol. 47 no. 5 article id 943. https://doi.org/10.14214/sf.943
Keywords: forest inventory; LIDAR; airborne laser scanning; stratified sampling; area-based approach
Highlights: Using laser data as auxiliary information in the selection of field plot locations helps to decrease costs in forest inventories based on airborne laser scanning; Two independent, differently selected sets of field plots were used for model fitting, and third for validation; Using partial instead of ordinary least squares had no major influence on the results; Forty well placed plots produced fairly reliable volume estimates.
Abstract | Full text in HTML | Full text in PDF | Author Info
Field measurements conducted on sample plots are a major cost component in airborne laser scanning (ALS) based forest inventories, as field data is needed to obtain reference variables for the statistical models. The ALS data also provides an excellent source of prior information that may be used in the design phase of the field survey to reduce the size of the field data set. In the current study, we acquired two independent modeling data sets: one with ALS-assisted and another with random plot selection. A third data set was used for validation. One canopy height and one canopy density variable were used as a basis for the ALS-assisted selection. Ordinary and partial least squares regressions for stem volume were fitted for four different strata using the two data sets separately. The results show that the ALS-assisted plot selection helped to decrease the root mean square error (RMSE) of the predicted volume. Although the differences in RMSE were relatively small, models based on random plot selection showed larger mean differences from the reference in the independent validation data. Furthermore, a sub-sampling experiment showed that 40 well placed plots should be enough for fairly reliable predictions.
  • Gobakken, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, Ås, Norway E-mail: terje.gobakken@umb.no
  • Korhonen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: lauri.korhonen@uef.fi (email)
  • Næsset, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, Ås, Norway E-mail: erik.naesset@umb.no
article id 109, category Research article
Ann Kristin Raymer, Terje Gobakken, Birger Solberg. (2011). Optimal forest management with carbon benefits included. Silva Fennica vol. 45 no. 3 article id 109. https://doi.org/10.14214/sf.109
Keywords: forest management; Norway spruce; substitution; CO2; greenhouse gas mitigation; optimisation; wood products
Abstract | View details | Full text in PDF | Author Info
In this paper, we analyse how optimal forest management of even aged Norway spruce changes when economic values are placed on carbon fixation, release, and saved greenhouse gas emissions from using wood instead of more energy intensive materials or fossil fuels. The analyses are done for three different site qualities in Norway, assuming present climate and with a range of CO2 prices and real rates of return. Compared to current recommended management, the optimal number of plants per ha and harvest age are considerably higher when carbon benefits are included, and increase with increasing price on CO2. Furthermore, planting becomes more favourable compared to natural regeneration. At the medium site quality, assuming 2% p.a. real rate of return and 20 euros per ton CO2, optimal planting density increases from 1500 per ha to 3000 per ha. Optimal harvest age increases from 90 to 140 years. Including saved greenhouse gas emissions when wood is used instead of more energy intensive materials or fossil fuels, i.e. substitution effects, does not affect optimal planting density much, but implies harvesting up to 20 years earlier. The value of the forest area increases with increasing price on CO2, and most of the income is from carbon. By using the current recommended management in calculations of carbon benefit, our results indicate that the forest’s potential to provide this environmental good is underestimated. The study includes many uncertain factors. Highest uncertainty is related to the accuracy of the forest growth and mortality functions at high stand ages and densities, and that albedo effects and future climate changes are not considered. As such, the results should be viewed as exploratory and not normative.
  • Raymer, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås, Norway E-mail: akr@nn.no
  • Gobakken, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås, Norway E-mail: terje.gobakken@umb.no (email)
  • Solberg, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås, Norway E-mail: bs@nn.no

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles