Current issue: 58(5)
The prefire fungal flora (polypores and corticoid fungi) of 284 dead trees, mainly fallen trunks of Norway spruce (Picea abies (L.) H. Karst.), was studied in 1991 in an old, spruce-dominated mesic forest in Southern Finland. Species diversity of the prefire fungal flora was very high, including a high proportion of locally rare species and four threatened polypore species in Finland.
In 1992 part of the study area (7.3 ha) was clear-cut and a 1.7 ha forest stand in the centre of study area was left standing with a tree volume of 150 m3/ha, and later on (June 1st) in the same year the whole area was burned. Burning was very efficient and all trees in the forest stand were dead one year after the fire. Also, the ground layer burned almost completely.
In 1993 the fungal flora of the 284 sample trees was studied again. Most of the trees had burned strongly and the fungal species diversity and the evenness in community structure had decreased considerably as compared with the prefire community. Species turnover was also great, especially in corticoid fungi. Greatest losses in the species numbers occurred in moderately and strongly decayed trees, in coniferous trees and in very strongly burned trees. Fungal flora of non-decayed and slightly decayed trees, deciduous trees and slightly burned trees seemed to have survived the fire quite well, and in these groups the species numbers had increased slightly as compared with the prefire community.
Fungal species suffering from fire (anthracophobe species) were mainly growing in moderately and strongly decayed trees before the fire, whereas species favoured by fire (anthracophile species) were growing in less decayed trees. No fruitbodies of threatened polypores or other "old-forest species" of polypores were found again after fire. Some very common and effective wood-rotting fungi (e.g. Fomitopsis pinicola, Fomes fomentarius, Antrodia serialis) survived the fire quite well (anthracoxene species). Species favoured by fire were mainly ruderal species which can utilize new, competition-free resources created by fire, and species that have their optima in dry and open places also outside forest-fire areas. Some rarities, e.g. Phanerochaete raduloides and Physisporinus rivulosus, were favoured by fire.
Nearly every forest land in Finland has been burnt down by a wildfire at least once during the past 400–500 years. Slash and burn cultivation (1700–1920) was practised on 50–75 percent of Finland's forests, while prescribed burning (1920–1990) has been applied to 2–3 percent of the country's forests. Because of land-use changes and efficient fire prevention and control systems, the occurrence of wildfires in Finland has decreased considerably during the past few decades. Owing to the biodiversity and ecologically favourable influence of fire, the current tendency is to revive the use of controlled fire in forestry in Finland. Prescribed burning is used in forest regeneration and endeavours are being made to revert old conservation forests to the starting point of succession through forest fires.
The prescribed burning of a 7.3 ha clear-cut and a 1.7 ha partially cut forest (volume 150 m3/ha) was carried out in Evo (61 °12'N, 25°07'E) on 1 June 1992. The forest was a mesic Myrtillus site type forest dominated by Norway spruce (Picea abies (L.) H. Karst.). Practically all the trees and the above-ground parts of the understorey vegetation died in the fire, while the mor layer was thinned by an average of 1.5 cm.
A study was made on the change of germinated seedling population in time and their dependence on environmental factors. Seedlings of Norway spruce, Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth), pubescent birch (B. pubescens Ehrh.) and rowan (Sorbus aucuparia L.) were inventoried in 1993 and in 1994 on permanent plots, four times per growing season. Autoregression models were used to compare regeneration of tree species in the burned forest with regeneration in the burnt clear-cut area, and to study the effect of distance from nearest seed source to regeneration.
The average number of seedlings germinating in 1993 was higher than in 1994, probably because of differences between these consecutive years in regard to the amount of seed rain and weather conditions. The number of Norway spruce and rowan seedling was higher inside the forest area than in the clear-cut area. The distance to the bordering forest and to the closest seed tree did not explain the result. It is suggested that the more stable microclimatic conditions under the shade of dead tree promote germination and seedling establishment in the forest area. As rowan is a bird-dispersed species, it is likely that dead trees help the dispersal of rowan seed by providing birds place to sit and defecate. The shade provided by dead trees may influence the further succession of the tree stand and vegetation composition and diversity.
The main features of the Finnish landscape are a result of preglacial erosion processes and the structural lines of the bedrock. The microstructure of the landscape was created by the Ice Age and its melting processes. Upon this base, human activities have created a palimpsest of cultural landscapes. The article describes the effects of slash-and-burn cultivation, tar production, cattle ranging and some other forest uses to the forest landscape.
The paper is based on a lecture given in the seminar ‘The forest as a Finnish cultural entity’, held in Helsinki in 1986. The PDF includes a summary in English.
The occurrence of Caleopsis bifida on clear-cut and burned forest soil and its disappearance in 4–6 years after disturbance is attributed to its germination ecology. Initially the seeds are dormant 96–100% and remain dormant in nylon gaze bags in different types of forest humus layers at least 10 years. Dormancy is released in laboratory (1) by treatment of 100 ppm aqueous solution of GA3, (2) by heating the dormant seeds to 40–55°C for 1–5 h, and (3) by 1% KNO3 solution. It is concluded that conditions in clear-cut and burned areas favour germination of seeds in regard to temperature and content of nitrates in contrast to humus of closed vegetation where the seeds remain dormant.
The PDF includes an abstract in Finnish.
This study deals with the succession of vegetation and tree stand in 16 mesic Myrtillus site type Scots pine (Pinus sylvestris L.) plantations after prescribed burning in Evo, Southern Finland. The oldest tree stands studied were about 30-year-old. The growth of trees followed the height index of Myrtillus type. The vegetation was first mesic, dominated by grasses and herbs, turning more xeric after four years. This change was accelerated by treatment with herbicides. After the closure of tree stand, vegetation became more characteristic of forest vegetation, but pioneer species and composition disappeared slowly. The basic characters of vegetation succession could be clearly described by DCA ordination and TWINSPAN classification. The study confirmed that Myrtillus type has succession phases which are typical for each age phases as Cajander’s forest site type theory has proposed. However, differences in primary and secondary site factors have their own effects on the vegetation of the succession phases.
The PDF includes an abstract in Finnish.
The study deals with the interaction of various soil preparation and reforestation methods. The most favourable time of the year for broadcast sowing and the effect of stabilization after soil preparation on restocking were studied as special problems.
Prescribed burning, scalping and disc ploughing made a better combination with sowing than planting, and ploughing better combination with planting than sowing. The longer the period was between sowing and germination the fewer seedlings emerged. The best stocking was clearly resulted with sowing in June. Stabilization of soil after preparation had a negative effect on reforestation results.
The PDF includes a summary in English.
Surface temperature during two prescribed burnings were measured in 1983 in Evo, Southern Finland. Surface temperatures in relation to the amount of slash burned, energy released during the fires, and the fire intensities were studied. The fire intensity was also measured during a third burn. The Lake Nimetön site was burned int the end of May. Due to the uneven distribution of slash, colonization by Calamagrostis arundinacea and the spring moisture, the burning was very uneven. Surface temperatures varied between 410–809°C and the intensity of fire was low (range 0–900 kW/m).
The fire intensity on the other sites burned in May was also low (880 kW/m). During the burn in August the surface temperatures varied between 701–869°C and the intensity of fire was moderate (1,170 kW/m). Slash was burned more evenly and more thoroughly due to the dryness of the site and slash and the fact that grasses and other herbs were not abundant.
The PDF includes a summary in Finnish.
Prescribed burning has reported to avail forest regeneration, for instance, by releasing nutrients for the use of seedlings, changing the pH of the soil and decreasing competition of ground vegetation. The aim of the study was to find out if the effects could be verified. Sample plots were measured in the experimental area of Tuomarniemi, in Central Finland, both in previously burned and untreated seedling stands and young forests. The main species in the sample plots was Scots pine (Pinus sylvestris L.).
According to the results, prescribed burning prepares the soil for regeneration. Germination percentage of the seeds is higher on the burned soil. All the species, Scots pine, Norway spruce (Picea abies (L.) Karst.) and birch species (Betula sp.) grow faster. Prescribed burning increases the amount of birch seedlings by improving its regeneration compared to unburned sites. The seed trees survive burning better if they are tall and have short crown, and have thick bark. In general, prescribed burning improves regeneration in seed tree stands.
The article includes a summary in German.
Silva Fennica issue 46 includes presentations held in professional development courses, arranged for foresters working in public administration in 1937. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes forest regeneration on poor forest sites.
Silva Fennica issue 46 includes presentations held in professional development courses, arranged for foresters working in public administration in 1937. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes the effect of properties of soil on forest regeneration.
The issue 39 of Silva Fennica includes presentations held in professional development courses in 1935 that were arranged for foresters working in public administration. The presentations focus on practical issues in forest management and administration, especially in regional level.
This presentation describes the forest management work in the state forests.
Tar was an important export article in Finland, then a part of Sweden, in the 18th century. For instance, in 1640 half of Finnish trade consisted of tar. In other countries, like Norway, Poland, Archangel in Russia, and North Sweden, burning of tar was minor compared to Finland. In Finland, tar was produced of young pine trees. Tar production concentrated in more remote locations of the country, where it would be too difficult and expensive to transport timber and wood products. The cheapest products, such as wood, boards and planks, were produced on a coastal zone at farthest 30 km from the coast. Tar was produced in the zone beyond the coastal district. The inland parts of Southern Finland were, however, hilly which made even the transport of tar difficult. Tar production ended by the middle of the 19th century when wooden ships were abandoned, and the value of forests and other wood products increased.
The PDF includes a summary in English.
Prescribed burning is a common silvicultural practice in northern Europe, intended to destroy the slash and ground vegetation and to reduce the thickness of the raw humus layer prior reforestation. The purpose of the experiments was to study whether there are any differences in the commencement and early development of mycorrhizal infection between burned and unburned areas. A clear-cutting area was burned on May 1961. The soil was rocky moraine, the forest type was Vaccinium type. Two weeks after burning Scots pine (Pinus sylvestris L.) was sown in patches.
According to the results, mycorrhizal infection took place on the unburned area earlier than on the burned. The difference was relatively small, perhaps 1–2 weeks. Although burning kills mycorrhizal fungi, it did not cause serious harm to the seedlings, on the contrary, the favourable influence of burning was more distinct. The high temperatures caused by the fire are restricted in the soil in a prescribed burning only a few centimetres deep. Although the mycorrhizal fungi are concentrated in a very thin surface layer of the soil, some mycorrhizae are situated deeper, and from there the fungi are able to infect roots and spread back to the surface layer. The fire also rises the pH of the soil, which can be harmful for mycorrhizal fungi. Even this effect, however, is limited to a thin surface layer.
The PDF includes a summary in Finnish.
Prescribed burning has been used in regeneration areas in Finland as a method to treat the humus layer and creating more favourable chemical, physical and biological conditions for the seedlings. At the same time, fire clears away seedlings and shoots of unwanted trees and other vegetation. Direct sowing or planting, mostly Scots pine (Pinus sylvestris L.), seldom natural regeneration, is used. In this paper, the initial stages of the formation of a new tree generation of Scots pine and Norway spruce (Picea abies (L.) Karst.) on prescribed burned areas is studied in Central Finland in 1956–1960.
The burned area remains almost without vegetation for about two growing seasons. Conditions on a burned area which has not been tiled are very unfavourable for germination of seeds of coniferous and deciduous trees. On the other hand, shoots of deciduous trees occur soon after burning. Conditions for regeneration were found to be better 3–5 years after burning. Removal of humus layer in spots improved regeneration. However, the patches facilitated also natural regeneration of Norway spruce and especially birch (Betula sp.), which compete with Scots pine seedlings.
Continuous rainy periods improved the germination of Scots pine and Norway spruce seeds sown on the humus layer. Pine and spruce developed more rapidly on the exposed soil, however, young seedlings were easily destroyed. Seed eaters destroyed the pine and spruce seeds sown on the humus layer of newly burned areas completely or almost completely. The viability of pine seeds sown on the burned humus layer did not decrease for three weeks, but the viability greatly weakened after six or more weeks. Spruce seeds lost their viability faster than pine seeds.
The PDF includes a summary in Finnish.
Prescribed burning has been used to treat the mineral soil sites, but the method has been little used in drained peatlands. The course and methods of prescribed burning in drained peatlands, and the effect of burning on sprouting of broadleaved trees, growth of ground vegetation and regeneration of Scots pine (Pinus sylvestris L.) by sowing was studied in drained pine bogs in Southern Finland. The top layer of the peat was mostly Sphagnum peat. The material included a prescribed burned 12 ha drained peatland area in Tuomarniemi district, in addition to which ten previously burned areas were investigated.
The burning had succeeded mostly well, but also unsuccessfully burned sites were observed. Estinguishing of the fire was easy, and no peat fires occurred. The fire burned only the logging residue, ground vegetation and the dry top layer of the peat. The roots of brushwood and grasses survived in the peat that insulated the top layer from the heat. For instance, the abundance of cloudberry (Rubus chamaemorus L.) increased after the fire. Similarly, burning did not affect sprouting of the stumps of downy birch (Betula pubescens Ehrh.). It cannot thus be used as a method to restrict the growth of coppice in regenerated areas. The seeds of Scots pine germinated well on the burned surface. 46% of the seeds developed to seedlings on sphagnum-shrub vegetation and 16% in feathermoss-shrub vegetation.
The PDF includes a summary in German.
The study area is state owned forest of Vesijako in southern middle Finland that has earlier been intensively managed with slash-and-burn agriculture. Reforestation of broad-leaved forests into coniferous forest with controlled burning has been studied on 76 sample plots.
The article describes the practice of leasing forest stands to leaseholders who executed the controlled burning and forest regeneration and management according a leasing contract. The results of the reforestation with coniferous trees shows that sowed pine (Pinus silvestris) stands give good results but spruce (Picea abies) must be planted as a seedling. For the state this method of forest improvement is cost effective and should be used more widely.
Forest fires pose a significant threat to forest carbon storage and sinks, yet they also play a crucial role in the natural dynamics of boreal forests. Accurate quantification of biomass changes resulting from forest fires is essential for damage assessment and controlled burning evaluation. This study utilized terrestrial laser scanning (TLS) to quantify changes in ground vegetation resulting from low-intensity surface fires. TLS data were collected before and after controlled burnings at eight one-hectare test sites in Scots pine (Pinus sylvestris L.) dominated boreal forests in Finland. A surface differencing-based method was developed to identify areas exposed to fire. Validation, based on visual interpretation of 1 × 1 m surface patches (n = 320), showed a recall, precision, and F1-score of 0.9 for the accuracy of identifying burned surfaces. The developed method allowed the assessment of the magnitude of fire-induced vegetation changes within the test sites. The proportions of burned 1 × 1 m areas within the test sites varied between 51–96%. Total volumetric change in ground vegetation was on average –1200 m³ ha-1, with burning reducing the vegetation volume by 1700 m³ ha-1 and vegetation growth increasing it by 500 m³ ha-1. Substantial variations in the volumetric changes within and between the test sites were detected, highlighting the complex dynamics of surface fires, and emphasizing the importance of having observations from multiple sites. This study demonstrates that bitemporal TLS measurements provide a robust means for characterizing fire-induced changes, facilitating the assessment of the impact of surface fires on forest ecosystems.
We studied the spatial decomposition rates of standardised organic substrates in soils (burned boreal pine-dominated sub-xeric forests in eastern Finland), with respect to charred and non-charred coarse woody debris (CWD). Decomposition rates of rooibos plant litter inside teabags (C:N = 42.870 ± 1.841) and pressed-sheet Nordic hardwood pulp (consisting of mainly alpha-cellulose) were measured at 0.2 m distance from 20 charred (LC0.2) and 40 non-charred logs (LNC0.2). We also measured decomposition at 60 plots located 3–10 m away from downed logs (L3,10). The rooibos decomposition rate constant ‘k’ was 8.4% greater at the LNC0.2 logs than at the L3,10 or LC0.2 logs. Cellulose decomposed more completely in 1 micron mesh bags at LNC0.2 (44% of buried bags had leftover material) than at LC0.2 (76%) or L3,10 (70%). Decomposition of cellulose material was rapid but varied greatly between sampling plots. Our results indicate that decomposition of the standardised organic matter was more rapid close to CWD pieces than further away. However, only the plots located near non-charred logs (LNC0.2) exhibited high decomposition rates, with no corresponding increase observed at the charred logs (LC0.2). This suggests a possible noteworthy indirect effect of forest burning on soil organic matter (SOM) decomposition rates close to charred CWD after forest fires. We urge for more studies on this tentative observation as it may affect the estimates on how fires affect carbon cycling in forests.
The article considers the relation of shifting cultivation to deforestation and degradation, and hence its impacts in terms of carbon emissions and sequestration potential. There is a need to understand these relationships better in the context of international policy on Reduced Emissions from Deforestation and Forest Degradation (REDD+). The article reviews the way in which shifting cultivation has been incorporated in global and national estimations of carbon emissions, and assembles the available information on shifting cultivation in Tropical Dry Forests (TDF) in Mexico, where it is widely practiced. It then takes the case of two villages, Tonaya and El Temazcal, which lie within the basin of the River Ayuquila in Jalisco, Mexico. Field data for the typical carbon stocks and fluxes associated with shifting cultivation are compared with stocks and fluxes associated with more intensive agricultural production in the same dry tropical forest area to highlight the carbon sequestration dynamics associated with the shortening and potential lengthening of the fallow cycles. The biomass density in the shifting cultivation system observed can reach levels similar to that of old growth forests, with old fallows (>20 years) having higher carbon stocks than old growth forests. Per Mg of maize produced, the biomass-related emissions from shifting cultivation in the traditional 12 year cycle are about three times those from permanent cultivation. We did not, however, take into account the additional emissions from inputs that result from the use of fertilizers and pesticides in the case of permanent agriculture. Shortening of the fallow cycle, which is occurring in the study area as a result of government subsidies, results in higher remaining stocks of carbon and lower emissions at the landscape level.
Growing Prunus avium L. within an agroforestry system (AFS) may result in sun damage to cambial tissues on sun-exposed bole faces. There are two periods of risk of damage caused by insolation to exposed tree boles, the summer, when cambial temperatures become too high, or during winter, when the frozen dormant cambium tissue thaws and then rapidly re-freezes, a phenomenon commonly referred to as sunscald or southwest disease. Damage on the south western bole face was observed on a number of P. avium within an AFS. Five trees were sampled to assess the period in time that damage occurred. To retrospectively investigate such damage, bark surface temperature data were collected over a two year period for a further five P. avium and analysed. It was shown that bark surface temperature on the south western bole face reached nearly 50 °C during summer and experienced a maximum range of 38 °C within a 24 hour period in spring. A specially formulated white paint was applied to two trees, thus, testing a method to reduce the risk of sun damage. Two models were constructed to predict maximum and minimum daily bark surface temperature using maximum, minimum and mean daily air temperature, daily sum of sunshine hours, cloud cover, wind speed, relative humidity, maximum solar elevation and height on the tree bole as predictor variables. The damage occurred during winter 2009/2010. The models were used to identify maximum and minimum bark surface temperatures during that winter enabling the identification of possible damage events.
In boreal forests fires often ignite and spread within the dominant moss and lichen cover of the ground layer vegetation, which thus greatly influences fire hazard. We used an experimental set-up in greenhouse conditions to study the differences in how (1) fuel moisture and (2) wind velocity influence the ignition probability and fuel consumption among four common circumboreal ground vegetation fuels, Pleurozium schreberi (Willd. ex Brid.) Mitt., Hylocomium splendens Schimp., Dicranum spp. and Cladonia rangiferina (L.) F. H. Wigg. Our results show that the reindeer lichen C. rangiferina was clearly the most flammable species, with high ignition probability even at high moisture contents and low wind velocities. Of the mosses, Dicranum was the least flammable, with low ignition probability and mass loss at low wind velocities regardless of moisture content. P. schreberi and H. splendens behaved somewhat similarly with wind velocities quickly increasing the initially low ignition probability and mass loss observed in the absence of wind. However, especially for mass loss, among-species differences tended to disappear with stronger winds. The observed differences can be explained by the different structures and growth forms of the studied species and open a potential avenue for improving forest fire risk predictions.