Moose (Alces alces L.) browsing was studied in young Scots pine (Pinus sylvestris L.) stands mixed with deciduous trees in high-density winter ranges. The proportional use of twig biomass decreased as the availability increased. The total as well as proportional biomass consumption were higher on the moist than on the dry type of forest. The per tree consumption of pine was higher on the moist type, where the availability of pine was lower. Deciduous trees were more consumed on the moist type, where their availability was relatively high. The consumption of pine saplings increased as the availability of birch increased. Pine stem breakages were most numerous when birch occurred as overgrowth above pine and at high birch densities. The availability of other deciduous tree species did not correlate with browsing intensity of Scots pine. Moose browsing had seriously inhibited the development of Scots pines in 6% of the stands, over 60% of available biomass having been removed. Rowan and aspen were commonly over-browsed and their height growth was inhibited, which occurred rarely by birch. There was no difference in the proportion of young stands in forest areas with high and low moose density. A high proportion of peatland forests was found to indicate relatively good feeding habitats in the high-density areas.
The PDF includes an abstract in Finnish.
A light seismic method, a short-pulse radar and a microwave probe are tested in assessing the properties of a forest road constructed on peatland. The light seismic method gave reliable values for estimating the bearing capacity of the road. It was found that bearing capacity was mostly dependent on embankment thickness, but quality of fabric might also have an influence. Embankment thickness and peat depth can be measured on the radiogram, and some additional information on road bed and peat obtained. The microwave peat probe permits recording of the continuous moisture profile in situ, which improves accuracy of planning.
The PDF includes a summary in Finnish.
Six seed collections were made in September–December 1984 in a natural Scots pine (Pinus sylvestris L.) stand in Southern Finland. The seeds were germinated immediately after the cone collection and three photoperiods (0.8 and 24 hours) were used in germination tests.
The seeds collected in September and October possessed relative dormancy, i.e. they did not germinate in darkness and at 10°C. Later in November and December the seeds were capable to germinate in darkness and at low temperature also. The gradual change in germination capacity is attributed to chilling temperatures in natural environments or in cone storage.
The PDF includes a summary in English.
The interactive effects of water stress and temperature on the CO2 response of photosynthesis was studied in Salix sp. cv. Aquatica using the closed IRGA system. A semi-empirical model was used to describe the CO2 response of photosynthesis. The interactive effect of water stress and temperature was divided into two components: the change in CO2 conductance and the change in the photosynthetic capacity. The CO2 conductance was not dependent on the temperature when the willow plant was well watered, but during water stress it decreased as the temperature increased. The photosynthetic capacity of the willow plant increased along with an increase in temperature when well-watered, but during water stress temperature had quite opposite effect.
The PDF includes a summary in Finnish.
Good correlation between radar reflection depth when using a FM-CW radar during winter and bearing capacity measurements during spring breakup was found. Therefore, it might be possible to evaluate the bearing capacity of forest roads using the radar sounding technique.
The PDF includes a summary in Finnish.
The use of forest mosses as bioindicators was tested with transplanted experiments. One transplantation experiment was made to study effects of air pollutants on two forest moss species, Hylocomnium splendens (Hedw.) Schimp. and Pleurozium schreberi (Willd. ex Brid.) Mitt. Another transplantation was used to study the nitrogen fixation capacity of blue-green algae in the Hylocomnium and Pleurozium moss layers. The surface structure of the moss species was studied by scanning electron microscopy. The air pollution induced changes in the surface structure of moss cells were observable soon after the transplantation. In polluted industrial areas the fertilizing effect of air-borne nitrogen compounds increased the photosynthetic activity of mosses before their destruction. Stress respiration was also observable in polluted areas. The nitrogen fixing capacity decreased or was almost inhibited in all the air-polluted environments.
Light and economic FM-CW radar has been developed for controlling the bearing capacity of ice roads and landings on ice used for timber transportation and storage of timber in Finland. It was tested on natural ice and ice roads of three lakes in Southern Finland and one location on sea on the southren coast of Finland (a total of 166 observations). Ice thickness varied from 0 to 100 cm. Correlation coefficient between auger and radar measured ice thickness was r=0.99 and absolute error varied from -10 to +7 cm. The quality of ice had no influence, but by improving the interpretation of results, also the quality factors might be detected.
The PDF includes a summary in Finnish.
Questionnaires were sent out to determine the volume of wood harvested from peatlands during 1978 and the harvesting problems encountered. In total there were 110 responses which accounted for 8 million m3 of wood harvested, of which 1.0 million m3 (14%) was harvested from peatlands. The largest proportion of wood harvested from peatlands was during the winter. Most of the respondents reportet that they wait for the soil frost to set before harvesting is started on peatlands. Respondents indicated a total of 263 machines bogging down in to the soil or, for 1978, a total for Finland of 750 to 1,000 machines.
The PDF includes a summary in English.
The PDF includes a summary in English.
The particle size distribution affects several properties of the soil, thus, the ability to define the texture type of the soil as accurately as possible in field conditions is essential. The soil particle size classification devised by Atterberg (1912) is used in Finnish forestry. The study is based on a small laboratory material. The correlation between some characteristics of the soil particle size distribution, field capacity and cation exchange capacity were determined.
The particle size characteristics such as the relative proportion of different particle sizes, average particle size (Md) and parameters depicting the degree of sorting were determined. The relative proportion of soil particles below 0.06 mm correlated best with both field capacity and cation exchange capacity. Similarly, the average particle size and the degree of sorting correlated well with the field capacity and the cation exchange capacity.
The use of sorting characteristics is not well-suited to the type of soil sample material containing a high proportion of particles of varying size as was used in this material. Such characteristics are probably more easily applicable to the fine sand and sand sediments which are predominant in Finnish forest soils. The most useful particle size distribution characteristics in soils having a great variation in particle sizes were the average particle size and the relative proportion of silt and clay. Thus, the nutrient and water status of the soil can be predicted to some extent by examining the percentage of silt and clay, average particle size and the degree of sorting.
The PDF includes a summary in English.
The concept of tree class as indicated by dominant, codominant, intermediate and suppressed trees is analysed using empirical material representing 13 younger Scots pine (Pinus sylvestris L.) stands. The relative needle biomass, i.e. the needle biomass related to the maximum needle biomass in the stand, was closely related to the relative height of the tree and independent of the stand characteristics. Furthermore, the relative illumination of the crown system was related to the relative height of the trees as well as the relative photosynthetic capacity and tree-to-tree variation in growth. When calculated per needle biomass unit it appeared that height growth, radial growth, needle growth and other growth parameters were the highest in the suppressed trees. The suppressed trees thus appear to be more efficient in utilizing available resources than other tree classes. The ecologic significance of the results is discussed.
The PDF includes a summary in Finnish.
The paper discusses the variation of flowering and seed crop of Scots pine (Pinus sylvestris L.) stands based on literature published in Finland. According to the studies, the list of good seed years given by different authors do not completely match, and no essentially new about the periodicity of the seed crop or the causes of variation has been found. The difficulty in classification of the seed crops in different years in different stands and locations can be handled through the concept of capacity. It is suggested in the paper that to be able to compare the occurrence of good flowering and seed years of different stands and localities, a case exceeding 50% of the capacity is described as abundant, and a case exceeding 75% as very heavy.
The PDF includes a summary in Finnish.
The effect of nitrogen fertilizers on the photosynthetic capacity of conifers is assessed on the basis of literature. The review emphasizes the role of changes of needle mass as a factor affecting the result of nutrient application. In particular, the increase in needle mass results in a considerable increase in photosynthetic capacity. The effect of fertilization on the photosynthetic rate seems to be of minor importance. The effect on the photosynthetic rate is, however, poorly documented as is the case for the effect of fertilization on the respiration rate. There is evidence that proper application of nitrogen fertilizers may double the photosynthetic capacity of conifers, mainly as a result of increase in needle mass.
The PDF includes a summary in English.
The paper deals mainly with the effects of jolting of forest tractors and processors on the health and working capacity of the driver. The literature surveyed presents especially the following points of interest: Jolting of the machine may hamper the focusing of the eyes and mastery of the controls. Long-term exposure to jolting may result in reduced sympathetic nervous activity at rest, and may impair an already existing back problem. Workers exposed to vibration, get more frequently gastric changes and changes in reproductive functions than usual. Jolting, as also the other negative physical factors of working environment, must be minimized as early as possible during the design of the machines.
The PDF includes a summary in English.
During the next decade there will be a marked increase in the allowable cut in drained peatlands. At the same time, the mechanization in logging proceeds, and in short-distance haulage the use of forwarders will increase. This study, based on literature and some observations, deals with logging conditions in drained peatlands with special reference to the suitability of heavy logging machines for use in such terrain. In addition, soil frost and the bearing capacity of the frozen peat soil were studied.
Freezing of the soil in a drained peatland area depends prevailingly on the weather conditions during early winter. The factors influencing soil freezing of a drained peatland are completely different from those regulating the freezing of natural peat soils. The frost penetrates in general deeper in the drained than virgin peatland. The topmost peat layer does not, however, freeze uniformly. Generally speaking, the bearing capacity of a drained peat soil is lower than that of undrained peat due to lower water content.
It is concluded that heavy logging machines are probably not fitted for use in drained areas on peatland even if the average soil frost values recorded would suggest it. Moreover, because of their extremely superficial root systems, peatland forests are exposed to damages by heavy machines in thinning operations.
The PDF includes a summary in English.
Photosynthesis and dark respiration in five families of autochtonous Norway spruce (Picea abies (L.) H. Karst.) and in seedlings from twenty Finnish stands of Scots pine (Pinus sylvestris L.) were investigated in constant environmental conditions. Values of CO2 exchange were compared with the height growth and weight of seedlings in Norway spruce and with the weight alone in Scots pine. No statistically significant differences were found in CO2 exchange among progenies or stands. Photosynthetic efficiency and photosynthetic capacity showed a positive correlation both in spruce and in pine. Growth and net photosynthetic capacity were linearly and positively correlated in pine. Spruce and a higher light compensation point than pine. The use of an open IRGA system with several simultaneous measurements and the trap-type cuvette construction in genetic work are discussed.
The PDF includes a summary in English.
The purpose of this study was to explain whether it is possible to affect, in practical working site conditions, by means of logging waste on the strip road, the depth of the track which is formed in terrain transportation and the injuries of the growing stand. Five 20 m long investigation areas with logging waste and five similar areas without logging waste were arranged on one strip road at Teisko logging site in Southern Finland. The logging waste layer was mainly Norway spruce and 10–15 cm thick. A KL–836 B forwarder was used. The type of soil was loam.
The logging waste affected the depth of the track only by decreasing the wear of humus layer. Even decreasing effect of logging waste on the injuries in the growing stand was minor. At Kitee working site in Eastern Finland strip roads were studied. The type of soil was thick, rather mouldered peat. The thickness of logging waste was 3–4 times greater than in Teisko, mainly spruce. A Volvo Nalle SM 460 forwarder was used. The effect of the logging waste on the depth of the tracks was clearly to be noticed. On basis of the appearance of the tracks one could assume that the difference was due to different wear of the humus, and not so much due to the quantity of logging waste that improves the carrying capacity of terrain.
In some extent logging waste was also found to affect the amount and quality of tree injuries. In practical working conditions, the importance might be small, since in the experiments an unrealistically great amount of logging waste was used.
The PDF includes a summary in English.
No other manifestation of life is allied more conspicuously to the theory of relativity as the growth of forest stands which is a function of the inherent growth potential of trees, the productive capacity of environment, and time.
The height over age quotient of a forest stand is usually the most reliable indicator of the productive forces of the habitat. Stem analysis have shown that increment of a tree at different ages is closely correlated with the extension of roots into individual geological horizons of different productive capacity. Growth curves of stands of a same tree species growing on different soils can be disparate due to different conditions. The temporal variety of tree growth on different sites is of prime importance in the construction of yield tables. Investigations of natural plant communities of Finland provided one rational approach towards the construction of yield tables. By confining mensuration analyses to define floristic types, the Finnish foresters harmonized their records with Einstein’s formula for space-time matrix of material events.
Draining of peatlands requires careful planning because of its costs. Only peatlands that have sufficient growth capacity in future should be drained. The future growth capacity can be estimated based on peatland type, the botanical composition of the peat layers and the quality of the surface peat layer of the swamp.
Also the draining methods should be cost effective. To keep the amount of drains low, the drain network and drain lines should be planned so that each drain has high drain effectivity. Most of the peatlands drained in Finland have been forested. Especially the young trees regain soon their growth when the peat begins to dry. It is recommended to leave the young trees, but most profitable to harvest the older forests in the drained area. Practical experiences have shown that even drained open peatlands can be naturally regenerated. Natural regeneration is almost guaranteed to succeed on peatlands, which have seed trees.
A summary in Finnish is included in the PDF.
Seed storing experiments with cones of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) were conducted in Oitti seed extracting plant in Southern Finland from February to December 1955. The pine cones were stores for 267 and the spruce coned for 304 days. In four of the storage methods the cones were packed in sacks and another four in wooden boxes. Sample of cones were taken once a month, seeds were extracted and the germinative capacity was tested. The remaining extracted seeds were placed in storage, and in January 1956 moved to cold seed cellar until 1962, when the viability of the seeds was tested.
According to the results, cleaned pine cones can be stores for at least nine months using almost all methods of storage which are commonly used at our seed traction plants, without hazarding the usability of the seeds. The seeds in spruce cones, however, seemed to be more sensitive to conditions during the storage. The germinative capacity of the spruce seeds began to decrease after the beginning of May. Later the seeds were infected with mould, which increased towards the end of the experiment.
Thus, preservation of the germinative capacity of the seeds of pine and spruce requires storage in different conditions. The results suggest that extraction of spruce seeds should be finished during the cold winter months. It seems that seed in the cones of pine and spruce endure storage in piles of paper or cloth sacks at least as well as in wooden boxes. Occasional warming of the storage, snow and foreign material among the cones and an over meter thick cone layer decreased the germinative capacity of spruce seeds during spring and summer. Spruce seeds that had been extracted immediately after collecting of the cones preserved their germinative capacity well during an eight years storage period.
The PDF includes a summary in English.
One of the factors that influence if a peatland is suitable for draining is the time required until fellings bring income, even if it the discounting calculations has uncertainties. This article discusses the factors that affect the economic profitability of draining peatlands.
The profitability of draining increases the more the yield or increase of the yield exceeds the costs of draining. Estimation of the yield is in Finland based on the peatland type, which reflects production capacity of the site. In addition, the growing stock of the site can vary in peatlands within same peatland type. The density and size of ditches affects the draining costs. Thus, productivity based on a peatland type alone does not describe well enough the drainability of a peatland area.
In Finnish classification of site quality of the peatlands, the treeless bogs and rich fens have been given too high a class compared to well stocked spruce swamps and pine swamps. Also, the drainability of two spruce and pine swamps can differ markedly in economic point of view if the tree’s quality, volume and ability to recover differ. The article discusses different methods to assess profitability of draining that have been descibed in the previous studies. It is suggested that the classification of peatlands by their drainability should be more selective.
The PDF includes a summary in German.
Annual variations in wood utilization makes it complicated to estimate the balance between wood utilization and wood production of forests. According to the article, the balance is unsustainable especially in the private forests in the southern part of Finland. The annual wood utilization of the country was 37.3 million m3 in 1913, and the annual wood production 35.2 million m3, according to a report of a committee that was appointed to find methods to prevent overcutting. The committee suggested legislation to forbid forest devastation. Also the growth of the forests could be increased, if the forests are well managed, the article argues. To prove this, the potential wood production capacity is estimated for the municipalities of Viipuri, Mikkeli and Kuopio, and compared to the present wood production and wood utilization of the area.
The PDF includes a German summary.
The aims of the present study were to determine physical and physio-chemical properties of some Finnish forest tree nursery soils, and to examine relationships between these properties and the amount of organic matter in the soil.
The following soil tillage layer properties of 33 fields belonging to 8 forest tree nurseries were determined: soil particle size distribution, organic matter content, bulk density and density of solids, total pore space, soil water volume at potentials pF 2.0 and 4.2, available water content and air space at potential pF 2.0, active acidity, electrical conductivity index and cation exchange capacities at pH 4.5 and 8.0. The soil texture class of the tillage layer parent material was sand, only in a few cases did higher percentage of silt and clay indicate a morainic nature of parent material. The amount of organic material in the soils varied within wide limits, reflecting differences in amelioration policy between the single nurseries.
Relationships between the physical properties of the soil parent material and those related to fertility were in most cases strongly influenced by the amount of soil organic matter. Soil density values decreased as the organic matter content increased from 2 to 25%, giving rise to the increase in the total pore space. However, the amount of water held at potential pF 2.0 and the available water content did not increase with increasing organic matter content. This was due to the absence of the particle fraction in the sand. Nursery soil amelioration, involving in most cases a mixture of Sphagnum peat with sand, thus gives rise to an increase in the content of drainable water.
Cation exchange capacities were positively correlated with the organic matter content. However, the absolute number of exchange sites expressed as equivalents in the tillage layer did not increase in accordance with the increase in organic matter content due to the influence of the organic matter content upon the ratio of solids in the voids.
The PDF includes a summary in English.
The aim of the present study was to describe the forest types of Finnish mineral forest lands as a uniform whole in the light of stand development and wood production.
The study shows that it has been possible to work out uniform age-based development series for different stand characteristics for forest types on mineral forest lands in Finland. There is generally a clear difference in the development series of various stand characteristics and their average values between different forest types. The exceptions in a few places have been explained as depending on certain factors. The differences between adjacent forest types in order of their quality are of varying magnitude, thus differing from a schematic site quality classification obtained through calculation. Consequently, each forest type has its own development series with regard to the stand characteristics.
The number of forest types in the whole country is rather high. However, the different forest types are limited to different parts cf the country in such a way that there is no need for more than 5–6 forest types and 4 northerly sub-forms (-types) in each region, except in the border areas between the regions. In Finland the forest types have been the basis of forest site classification in forest research and practical forestry over a period of half a century. In pointing out the necessity of further study of forest types, Cajander has stressed the examination of differences in the compositions of vegetation between different classes of density of tree-stand and building up average descriptions of vegetation in such classes in young, middle-age and old stands. The same may be caused by some other factors which also are of essential influence to the composition of the vegetation.
The PDF includes a summary in English.
The paper is a part of a larger study of the basic hydrologic properties of peat. This part of the study deals with the hydraulic conductivity and water retention capacity of peat and with their dependence on some of its structural properties. The data of the study was collected in Central Finland (61°50'N; 24°20'E) from drained peatlands. The limits of the quantitative range of variation in the hydraulic conductivity of peat can be put at 2.0 x 10-6 and 1.1 x 1O-2 cm/sec. The variation occurring in the hydraulic conductivity of peat is extremely large. At saturation peat contains 82–95 volume per cent of water. The bulk density of peat seemed to be the factor best able to explain its water retention capacity. The quantity of water which can be removed from a site by draining decreases with increasing bulk density in such a way that it, in the case of well decomposed peat (bulk density 0.20 g/cm3) is slightly less than one third of that for slightly decomposed peat (bulk density 0.05 g/cm3). Also, the possibilities to estimate the quantities of water superfluous, available and unavailable to the plant cover is discussed.
The PDF includes a summary in Finnish.
In southern Lapland, 70% of drained peatland forests have a peat layer thickness of less than one metre. On these sites, the question is how the subsoil under the peat affects groundwater level and thus timber harvesting. The aim of this study was to investigate the effect of the peat layer (<1 m) and subsoil on the groundwater level and its variation during the growing season (non-frost) by modelling the factors affecting water level. In sandy soils, the groundwater level rose by 20 cm when the peat layer thickness increased from 20 to 70 cm. In silty soils the effect of the peat thickness on groundwater remained minor. When the subsoil was sand or coarser, the groundwater level was usually deeper than when it was silty or finer. The effect of stand volume (m–3 ha–1) on the groundwater level was rather weak albeit significant. The model explained a significant part of the groundwater surface variation, with a marginal coefficient of determination (R2) of 68%. It seems that the rutting of roads could be avoided in late summer if the precipitation is remarkably lower during that period, or if the subsoil is sandy with thin peat layer on top of it. Because the groundwater level affects the load-bearing capacity of timber-harvesting machinery, it is important to study this issue in more detail in the future.
The amount of water in peat soil is one factor affecting its bearing capacity, which is a crucial aspect in planning peatland timber harvesting operations. We studied the influence of weather variables on the variation of drained peatland growing season water conditions, here the ground water table depth (WTD). WTD was manually monitored four times in 2014 and three times in 2015 in 10–30 sample plots located in four drained peatland forests in south-western Finland. For each peatland, precipitation and evapotranspiration were calculated from the records of the nearest Finnish Meteorological Institute field stations covering periods from one day to four weeks preceding the WTD monitoring date. A mixed linear model was constructed to investigate the impact of the weather parameters on WTD. Precipitation of the previous four–week period was the most important explanatory variable. The four-week evapotranspiration amount was interacting with the Julian day showing a greater effect in late summer. Other variables influencing WTD were stand volume within the three-metre radius sample plot and distance from nearest ditch. Our results show the potential of weather parameters, specifically that of the previous four-week precipitation and evapotranspiration, for predicting drained peatland water table depth variation and subsequently, the possibility to develop a more general empirical model to assist planning of harvesting operations on drained peatlands.
Physiological studies of long-lived trees are particularly important at this time, especially in light of the need for trees to adapt to global climate change. The results of the present studies were obtained on an approximately 700-year-old Quercus robur L. – the ‘Bartek’ oak. The tree has to adapt to changing climatic conditions, starting from the transition between the Medieval Warm Period and the Little Ice Age, up to the present time of rapid global climate change. Tomograph imaging showed decay of the tree trunk interior and revealed that undamaged wood forms a thin layer around the trunk perimeter. Two series of experiments were carried out to assess the physiological state of the tree. The first concerned measurements related to photosynthetic capacity: chlorophyll a fluorescence, gas exchange (CO2 assimilation, transpiration), stomatal conductance and leaf water potential. The second series concerned xylem sap flow velocity and anatomical studies of stem wood. Photosynthetic capacity was within the limits reported for young healthy trees. The diurnal pattern of velocity of xylem sap flow was also typical for young vigorous trees and flow velocity correlated positively with solar radiation and negatively with air relative humidity. Anatomical observations of the outermost wood showed relatively narrow annuals rings with large diameter earlywood vessels. The results indicate that the veteran tree does not show signs of water stress probably due to a good balance of water flow and that leaf area of the canopy needs only the current ring of wood to feed transpiration of the canopy.