The matrix potential, measured with tensiometers, and its effect on the soil air-water ratio were examined during the production of bare-rooted Scots pine (Pinus sylvestris L.) seedlings in nursery fields. Soil water potential was monitored during the growing season of 1983 at three nurseries in Finland, and from fields growing various seedling types at depths of 10 and 20 cm. In 1986, soil core samples were collected in order to assess the water desorption characteristics of the soil. In addition, the effect of polypropylene gauze covering (Agryl P 17) on the soil water potential was examined during the growing season of 1985 at two nurseries in Finland at depths of 5, 10 and 15 cm.
The soil water potential was relatively high in all the fields studied. In fields growing one- and two-year-old seedlings, the median potential was higher than -10 kPa. The potential did not fall below the limit of the measured scale (ca. -85 kPa) of the tensiometers. Soil aeriation may have been periodically insufficient in the rooting zone, as a result of high water content. The favourable water potential is below -5 to – 6 kPa. The gauze covering slightly (1–4 kPa) increased the soil water potential, an effect which could be harmful if the soil air space is low. During the second growing season, the soil water potential was lower in the fields covered by the gauze during the first year than in the fields without the covering.
The PDF includes an abstract in English.
Containerized tree seedlings will be used on an increasing scale in the future in different parts of the world. There are number of techniques for the production of small one-year-old seedlings but it has not been possible to develop a completely satisfactory methods for large containerized seedlings production. In the long-term development of pine plantations established with containerized seedlings the greatest problem has been deformation of the root system. With a new method, based on a sheet of peat and root pruning, it has been possible to produce conifer seedlings with a good root regeneration potential and favourable morphological root system development. The use of small containerized seedlings allows an increase in planting density without any marked increase in regeneration costs.
The PDF includes an abstract in English.
The author first introduced the cut-block seedling production method to Finland in 1969. The aim is to raise seedlings whose lateral roots do not become deformed as a result of a restricting container or other external pressure. The seedlings are raised in a large, fairly compact substrate block where the roots can freely develop in a normal fashion. The blocks are then cut up into individual cubes, each containing a seedling. The precise positioning of the sowing point permits mechanization of the work.
The PDF includes an abstract in English.
Ring width at breast height is presented as a function of stem radius at breast height, the ratio between the diameter of a tree and the basal area median diameter, site index, and density of stand. By means of a conversion model ring width at stump height can be estimated as a function of ring width at breast height.
According to previous studies substantially better wood quality can be expected if mean width near the pith at stump height decreases from 3 to 2 mm. According to the present study only on the poorest sites suitable for Scots pine (Pinus sylvestris L.) planting (poor Vaccinium type) the ring width is less than 3 mm at stump height even in the thickest trees. On more fertile sites a substantial increase in the recommended planting density is required, if the mean ring width is aimed to be less than 3 mm. On the best sites it is impossible to reach mean ring width of less than 2 mm, when the density is less than 4,000 stems/ha. Only the thinnest trees on the poorest sites can have a mean ring width less than 2mm.
The PDF includes an abstract in English.
The experiment was performed in 1982–85 at the forest tree nursery in Suonenjoki, Central Finland. There were four to five transplanting dates ranging from the beginning of August to the end of September. The dry matter content, root regeneration and needle retention value of Scots pine (Pinus sylvestris L.) seedlings were examined. Development of the needle retention value in autumn was followed in nurseries at Suonenjoki, Rantasalmi, Mäntyharju and Taavetti in 1982.
Root regeneration was usually the worse, the later the seedlings were transplanted in the autumn. The dry matter content was generally lowest in the seedlings transplanted later in the autumn, and also to some extent in the seedlings transplanted at the beginning of August. The needle retention value increased as autumn advanced. Early transplanting in autumn had an adverse effect on the development of needle retention, and the values were highest in the seedlings transplanted later in the autumn.
The PDF includes an abstract English.
Early growth of four different tree species (Pinus sylvestris L., Picea abies (L.) H. Karst., Larix sibirica Ledeb and Betula pendula Roth) 16–23 years after planting were compared in a field experiment of 16 square plots established on a stony, grove-like upland (Oxalis-Myrtillus forest type) in Southern Finland. This study gives additional results to the publication Folia Forestalia 386/1979.
At this early stage, the growth of the spruce stand was clearly slower than that of the other species for all parameters to be measured (height, diameter, and volume growth). Height growth was most rapid in the silver birch stand and diameter growth in the larch stand. No clear differences were found in the mean volume of the 100 thickest trees in the stand between the larch and silver birch.
The PDF includes a summary in English.
The aim of the present study was to survey the occurrence of Otiorrhynchus nodosus Müller weevils and their significance for the natural regeneration of Scots pine (Pinus sylvestris L.). The study was carried out during summer 1982 at Inari in northern Lapland.
There were two sample plots, one situated in a Scots pine seed-tree area and the other, the control sample plot, in an area with a coverage of mountain birch (Betula pubescens subsp. tortuosa, now subsp. czerepanovii). A total of 177 Otiorhynchus weevils were caught. Movement of the weevils reached its climax in July. There were 86% more individuals in the seed-tree area than in the mountain birch area. No damage to the pine germlings or seedlings was not observed, although the situation could be different during the peaks of the veewil populations.
The PDF includes a summary in English.
The effects of variations in the intensity of drainage and NPK fertilization on the natural regeneration and planting results and the subsequent development of seedling stands under various climatic conditions on drained nutrient poor pine bogs was investigated in a 16-year-old study.
Comparison of height development of Scots pine (Pinus sylvestris L.) stands on drained peatlands to that of pine stands growing in mineral soil sites show that in Southern Finland the most efficient forest improvement measures (10 m ditch spacing and 1,000 kg/ha NPK-fertilization) resulted in growth that corresponds a to a height index of a stand in a Vaccinium type site. Less efficient treatment (30 m ditch spacing and no fertilizer) resulted in growth corresponding the development of young stand in a Calluna type site. In Northern Finland the effect of fertilization on height growth was almost negligible. This is possibly due to a decrease in the nitrogen mobilization from south to north of Finland. Thus, it seems evident that fertilization of young Scots pine stands on nutrient poor drained peatlands can be recommended only in the southern part of the country.
The effect of ditch spacing is same in the whole country. The narrower the spacing the better the height growth. In the south planted stands thrive better than naturally regenerated stands, but the situation is reversed in the north.
The PDF includes a summary in English.
The aim of the paper was to describe the development of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seedling stands on drained peatlands and to find out the principal factors influencing their growth. The material under survey consists of 180 sample plots distributed from southern coast of Finland to the Polar Circle.
The most important growth factors have been the accumulated temperature sum, site quality, drainage intensity and silvicultural condition, such as the density of the stand, the proportion of birch in the stand, and the amount of possible shelterwoods. The influence of these factors, and to some extent the influence of fertilizing, and the disturbing effects of some forest damages, such as frost, growth disturbances and elk damages were investigated. Comparisons of the development in the seedling stands on drained peatlands with the known development of seedling stands in mineral soils were made.
The PDF includes a summary in English.
The applicability of MCPA- and 2,4,5-T-herbicides for use in the management of sapling stands and the possibilities of carrying out foliar spraying at an earlier date than at precent with smaller doses of the active ingredient were examined in this study. The results were obtained from foliage spraying experiments carried out in Central Finland in summer 1976. MCPA and 2,4,5-T were as effective as each other against deciduous tree species. However, MCPA was slightly more effective against aspen (Populus tremula L.) than 2,4,5-T. The spraying date had no effect on the mortality rate of aspen or birch (Betula pendula Roth and B. pubescens Ehrh.) There were only very slight differences between the results for different dosage levels. The damage caused to Scots pine (Pinus sylvestris L.) was very slight. The temperature conditions prevailing during spraying affected spraying effectiveness in such way that the mortality rate decreased during cold period.
The PDF includes a summary in English.
A theoretical nomogram was made for estimating the costs of fully mechanized thinning and the driving speed of the machine. Based on this nomogram and the previous studies three harvesting methods were compared; systematic fully mechanized harvesting, selective fully mechanized harvesting, and manual felling combined with whole-tree chipping.
The third method was cheaper than the fully mechanized methods in a pole-stage stand. The choice of the most advantageous chipping station depended on conditions, but the smaller tree size and possibly the reduced damage on the remaining stand favour chipping on the strip road rather than chipping on the intermediate landing or at the mill.
Mechanized systematic thinning was the cheapest method for harvesting in the sapling stand. The required driving speed were so low that ergonomic factors should not hinder its use. Factors related to the future production of the stand do, however, limit its use. Mechanized selective thinning does not seem to be an economic method for harvesting in a sapling or pole-stage stand.
The PDF includes a summary in English.
After 64 days of aseptic culture, germlings of Pinus Syvestris L. were cut at the middle of the hypocotyl and above the root. The upper and lower halves of the hypocotyls were transferred onto agar medium RM-196 of Linsmaier & Skoog (1964) including 2 mg/l IAA and 0.1, 1 or 10 mg/l kinetin, one or both halves being put in each vial. Callus growth and root formation was observed after 55 days.
The lower ends of basally cut seedlings generally formed callus tissue and 20% of them also formed roots from this callus. No roots and less callus growth were observed in the lower hypocotyle halves excised at both ends. In the latter hypocotyles callus growth was promoted by the presence in the same vial of a basally excised germling, including cotyledons and plumule. Increasing amounts of kinetin slightly enhanced callus formation of basally excised germlings but seemed to inhibit callus growth in hypocotyls excised at both ends and placed alone on the growth medium. The total amount of callus was greatest in hypocotyls which included intact cotyledons and plumule.
The PDF includes a summary in English.
The purpose of this study was to compare the development of Scots pine (Pinus sylvestris L.) seedlings sown on substrates off milled peat and milled bark. Mille peat, ordinary milled bark, milled inner bark waste, and a mixture of milled peat and milled bark in the ratio of 1:1, were all compared in the plastic greenhouse. In addition, two fertilization applications were used with milled park: ordinary surface fertilization and double surface fertilization. The germination and development were measured twice during the summer.
It is concluded that milled bark seems to be a rather useful substrate for use in plastic greenhouses, as long as its special requirements are taken into consideration. In the first measurement, there were no differences between the treatments, in the second measurements seedlings growing on a mixture of peat and bark were slightly more developed than the others. Growth of the seedlings was slightly better in ordinary milled bark. Double surface fertilization increased disease and mortality compared to ordinary fertilization.
The PDF includes a summary in English.
The study was carried out in order to establish the possible influence of damage caused to the needles of Picea abies (L.) H. Karst. by the spruce spider mite, Oligonychus ununguis (Jacobi), and the growth of the damaged seedlings. The study was carried out in 1968–1970 by comparing growth of seedlings infected with spruce spider mite with that of seedlings where mites had been killed with acaricide (Eradex®). In the seedlings that had not been treated with acaricide, the number of wintering eggs were 60, 20 and 5 per shoot in the various years of the study. When the experiment was laid out, before planting and acaricide treatment, the seedlings were four years old, all seadlings were heavily infected, the number of wintering eggs being 100 per shoot. The growth of infected seedlings was 3, 20 and 15% smaller than that obtained for the seedlings which had been treated with acaricide.
The PDF includes a summary in English.
This paper presents the results of a contest performed on behalf of the Finnish bank Kansallis-Osake-Pankki and the Central Forestry Board Tapio on growing trees on peatlands. Over 5,000 sample plots were established on drained peatlands in various parts of Finland. The aim was to achieve a best possible growth of seedling stands on peatland. The factors influencing the growth of 85 best Scots pine (Pinus sylvestris L.) and 60 best Norway spruce (Picea abies (L.) H.Karst.) sample plots were studied.
The height growth of the seedling stands decreased towards the north. Fertilization seemed not to decrease the regional differences; rather on the contrary. On the other hand, fertilization increased height growth, but evidently so that the increase obtained was greater in the southern than in the northern parts of the country. Light fertilization (50 kg/ha of K2O and 60 kg/ha of O2P5) caused a clear increase in height growth while heavy fertilization (100 g/ha of K2O and 120 kg/ha of O2P5), had same effect but to much greater extent than the former. Spruce seedling stands in particular benefitted of the heavy fertilization.
Fertilization did not eliminate the original differences in the quality of the sites in question, but these could still be seen in the height growth after fertilization. The effect of drain spacing on the height growth was not very clear. In dense seedling stands (800 seedlings/ha) the height growth of the dominant seedlings was greater than that obtained in stands of lower density. Hold-overs caused a decrease in the growth of the seedling stands.
The PDF includes a summary in English.
The aim of this study was to establish the need of treatment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seeds to be sown in greenhouse. 3 x 100 seeds of each treatment (soaking in water, treatment with Pb3O4, treatment with tiram-containing coating substance) were sown in a glasshouse on a fertilized garden peat, and covered with peat layer of 6 mm thickness. The development of seedlings was followed for 100 days before the final measurement.
Soaking the seeds with water made germination somewhat faster. In spruce the germination percentage increased, but the opposite was observed in pine. No difference could be observed between the results from soaking with acid water from peat soil and lake water. Drying the soaked seeds for a week before sowing had no harmful influence on the germination or the early development of the seedlings. Treatment with Pb3O4 did not affect the germination speed or the seedling percentage of pine or spruce, but increased the germination percentage of spruce. Coating decreased germination and seedling percentages in pine. However, the differences between the treatments were so small that their practical significance is negligible.
Germination of both the species initiated on an average in 8 days, and 16 days after sowing 80% of the seeds had germinated. Seedling mortality was about 10% of the total number of seedlings, the most common reason being damping-off.
The PDF includes a summary in English.
In Finland the mite Nalepella is found in Norway spruce (Picea abies (L.) H. Karst.) in forests practically in every tree, and even in the nurseries. The paper reports on the occurrence of Nalepella Haarlovi var. picea-abietis Löyttyniemi in Finland in tree nurseries in Finland. The study is based on a large material, collected in connection with an investigation into spruce spider mites.
Nalepella lives vagrantly on the needles. Due to the sucking of the mites, the needles turn yellow, become dry an die. Single patches from sucking cannot be seen by the naked eye. They occur on all sides of the needles. The worst damage to spruce seedlings in nurseries is caused to the needles located in the top of the seedling. Sometimes the terminal bud dryes and the whole terminal shoot can die. However, the whole seedlings seldom die in consequence of the Nalepella mite alone. Subsequent damage to the injured needles is often caused by fungus Cladosporium herbarum.
The study shows that the mite causes economically significant damages only in the nurseries. In forests no such damages were observed in seedlings or in older trees. In 1965–68, significant damages occurred in 16 nurseries in Finland. About 600,000 four-year-old seedlings were destroyed in 1967. The damages were economically important only in the 4-year-old seedlings.
According to the study, seedlings damaged by Nalepella can be used for planting as they recover rather well after planting in the forest. Moreover, the damages end after planting, and density of the mite population decreases during the first summer.
The mite overwinters as egg on needles. The eggs hatch in Southern Finland in the end of April and in the beginning of May.
The PDF includes a summary in English.
In early spring 1968 it was noticed that the black grouses (Lyrurus tetris L.) was eating terminal shoots of Scots pine (Pinus sylvestris L.) seedlings in a tree nursery in Luumäki, Southern Finland. The terminal shoots were picked 1–4 cm from the top of the seedlings. In total some thousands of two-year-old seedlings were damaged. The depth of the snow was 10–15 cm deep and only the tops of the seedlings could be seen above the surface of the snow.
The PDF includes a summary in English.
The paper outlines the information about forest tree nurseries in the Roman Empire, found in ancient writings. According to the author, it cannot be stated that actual forest cultivation was practiced in the times of the Roman Empire, even if tree seedlings were used for a variety of purposes, such as embellishment of cities, parks and gardens, and raising supporting trees in forest vineyards. Nurseries were usually established on farms to fill the owner’s needs. For instance, Gato, Varro, Virgil, Pliny and Colulmella have given instructions about establishment and management of nurseries, and methods to sowing seeds of different tree species. Except for seeds, both root- and branch-cuttings were used in cultivation of trees. Also, grafting was known.
The PDF includes a summary in English.
When the seed harvest of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) are low, pine and spruce buds are among the secondary food items of squirrel (Sciurus vulgaris L.) in Finland. In this study, conducted in Nokia in Southern Finland in 1962-1963, eating of pine buds by squirrel is described. The eaten buds in 15-years old Scots pine seedlings were recorded in two seedling stands.
According to the results, the squirrels selected the largest buds of the best seedlings in the studied stands. In over 50% of the cases the squirrels chose only the buds of the leading shoot, especially the terminal bud. In half of the trees, a side bud of the leading shoot continued the growth, which causes form defects in the trees. In 35% of the damaged trees, a lateral branch continued the growth. Well-growing seedling stands may be especially susceptible for damages caused by, for instance, squirrels.
The PDF includes a summary in Finnish.
Since 1954 studies have been carried out by the Department of Plant Pathology of Agricultural Research Centre on occurrence of low-temperature parasitic fungi in nurseries in Finland. This paper reports analysis of the damage caused by the fungus to Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seedlings.
In Southern and southwestern Finland, scarcely any damage caused by low-temperature parasitic fungi to coniferous seedlings was found. On the other hand, in Central, Eastern and Northern Finland, considerable injuries were present in the seedlings. The extent of damage varies between different localities and in a same location from year to year. The extent of damage is mostly dependent on snow cover which is heaviest in Central and Northern Finland. Damages are largest in wooded areas and in places where snow accumulates abundantly and remains until late in the spring.
The principal cause of winter damage to spruce seedlings is Hepotricia nigra (Hartig) which causes black snow mould. Depending on the amount of infestation, the damage can be limited to scattered groups or consist of large areas of dead seedlings. The fungus is unable to infect the plants during warm months of the growing season. The most damaging parasitic fungus in Scots pine is Phacidium infestans (Karst.) causing snow blight. The infestation varies from reddish-brown patches of infected seedlings to large areas of infected plants. Also, Botrytis cinerea has been determined from one- and two-year plants of pine and spruce.
In trials of chemical control by PCNB (pentachloronitrobenzene) gave nearly complete control of low-temperature parasitic fungi in one-year spruce seedlings. In addition, a compound of zineb (Dithane Z-78) gave similar results. Chemical control of the fungi is now common in the nurseries.
The PDF includes a summary in English.
The aim of the study was to find out more about pine weevil (Hylobious abietis L.) injuries in Scots pine (Pinus sylvestris L.) seedling stands and their control by means of DDT. For this purpose, inventories were made of seedling stands established earlier. Control experiments were made on burnt areas by planting seedlings dipped in a DDT emulsion.
The results of the inventories show that injuries caused by pine weevils can, in certain circumstances, especially in seedling stands established by planting, cause the complete failure in artificial regeneration. The extent and quality of the injuries vary greatly according to planting method, treatment of the cutting area, age of the seedling stand, environmental factors, and weather conditions. The most extensive injuries occur in regeneration areas of old Norway spruce stands burnt after clear cutting and planted with Scots pine seedlings. Injuries are greater in seedling stands established by planting, especially after broadcast burning, than in seedling stands originating either from artificial or natural seeding. The quality of the patch for sowing or planting has a considerable effect on the quantity and character of the injuries: in a patch from which organic matter has been removed, injuries do not appear or they are slighter. Seedlings can be protected effectively and economically by dipping their tops up to the root collar, in a DDT emulsion before planting.
The PDF includes a summary in English.
The aim of the study was to compare the newly introduced brush cutter to ordinary hand tools in clearing of cutting areas and thinning young birch (Betula sp.) and Scots pine (Pinus Sylvestris L.) stands. Working with a prototype of the brush cutter, Brushmaster, reduced the total working time by 15-20% compared to bush knife and axe, in spite of the cutter’s weight. At rainy weather the advantage of Brushmaster dissapeared because of clogging of the cutter’s air filter. The prototype proved to be more effective when clearing a cutting area, and hand tools seemed to be faster if damage to the remaining trees have to be avoided.
In addition, eight either lighter or more effective motor saws or brush cutters were compared mutually, and the effect of motor effect, weight, handiness, arrangement of suspenders and handles is discussed. With these improved types of the cutter it was possible to shorten the total working time in thinning of stands (mostly clearing of young stands) to 30-40% of the total working time compared to hand tools. The most modern saws appeared to be best adapted in clearing cutting areas.
The article includes an abstract in English.
In 1953 and 1954 needle cast (Peridermium pinastri (Shrad.) Chev., now Lophodermium) caused much damage at the Leksvall nursery at Tammisaari as well as at some other nurseries in Southern Finland.
Experiments were conducted at the Leksvall nursery with different fungicides. The results showed that with spraying done every second week during the whole growing season beginning on May 20th and ending on 27th September in 1954, the damage caused by needle cast was entirely controlled with 2% Bordeaux mixture and the zineb preparation (Dithane Z-78); nabam preparation (Dithane D-14) being somewhat less effective. Lime sulphur, Burgundy mixture, thiram preparation, captan preparation, and PCNB preparation were rather ineffective, in addition, of these the lime sulphur and the Burgundy mixture caused damage to the needles. Phenylmercury preparation proved useless.
The article includes an abstract in English.
The article reviews the occurrence of damage causes by elk (Alces alces L.) in young Scots pine (Pinus sylvestris L.) stands established by direct seeding in the Ostrobothia region in Finland. The data was collected by random sampling, and consists of 110 sample plots in pine stands, established in 1930-1944.
Signs of elk damages could be observed in 20% of the stands. In more than half of the damaged stands pine seedlings were damaged by elk, on the rest of the stands the damage was targeted to hardwood saplings only. With the present density of elk population, the damage has an insignificant bearing upon the development of pine seedling stands in Ostrobothnia. The weaknesses of silvicultural state of the stands have been caused by other factors than elk.
Silviculturally weak stands were more liable to elk damage than strong ones. The occurrence of elk damage was more usual in stands with hardwood mixture than in pure pine stands. Especially goat willow, mountain ash and aspen, but also to some decree birch, seem to attract elk. Those factors that promote hardwood growth: fertility of the site, swampiness and the presence of seeding hardwoods in the area, increase the stand’s liability to elk damage.
The article includes an abstract in English and a summary in Swedish.
Increase in the elk (Alces alces L.) population and the problems of its grazing has called for detailed research. The present study concentrated on three observation areas representing northern, western and eastern parts of Finland. There were 28 field observers watching 68 elks.
Earlier investigations in Finland indicate that aspen (Populus tremula L.) is the staple diet of elk. This study reached different conclusions, probably largely because of aspen is gradually becoming an increasingly rare tree species in Finland. According to this study, the principal food of elk in the winter is willow (Salix sp.). In the whole country, willow accounts for about 70% of elk’s nutrition. In the Far North the percentage is approx. 90. Of the other tree species, the order of preference is: aspen, Scots pine, mountain ash, juniper and birch. In addition, in Western Finland where snow is less deep, lingonberry and blueberry shrubs are on the menu. Beard moss on the spruce was frequently eaten locally. Elk seems to have eaten mainly the last annual shoot of trees and bushes. In few cases it has gnawed the bark of Scots pine, aspen and willow. Elk consumes in average 340 twigs or terminal shoots per day in the winter. This corresponds to about 1.8 kg of food.
The problem of elks damaging Scots pine seedlings has been observed in Western Finland, were the elk population is higher. The article suggests that suitable feeding places would be left for elk in places that are unsuitable for agriculture or forestry. Leaving, for instance, birch seedlings in Scots pine stands has been noticed to attract elks and to increase the damage to pine.
The article includes an abstract in English and a summary in Swedish.
Finland has a long tradition of grazing cattle in the forests and common land. There are also reports of degradation of forests by grazing already in 1600th century. The aim of the survey was to study which positive and negative effects grazing has in forests.
The study concludes that grazing has caused considerable economic losses through damages to forests. In addition, woodland pastures cannot give the yields required in modern animal husbandry. The quality of woodland pastures have decreased after the woodlands used in slash and burn culture have become wooded.
Grazing has also some positive effects to forests. It increases the diversity of vegetation in the woodland pastures and spreads species to new areas. This is supported by the lists of species found in different woodland pastures. Cattle destroy large grasses like Calamagrostis, which may avail growth of tree seedlings in the pastures. Grazing can also prepare the site for tree seedlings. On the other hand, prolonged grazing destroys tree seedlings and prevents regeneration.
The article includes a German summary.
Silva Fennica issue 46 includes presentations held in professional development courses, arranged for foresters working in public administration in 1937. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes production of forest tree seedlings.
Silva Fennica issue 46 includes presentations held in professional development courses, arranged for foresters working in public administration in 1937. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes inspection of forest regeneration of mineral soil forest types and drained peatlands, and inspection of ditches.
The issue 39 of Silva Fennica includes presentations held in professional development courses in 1935 that were arranged for foresters working in public administration. The presentations focus on practical issues in forest management and administration, especially in regional level.
This presentation describes the forest management work in the state forests.
Silva Fennica Issue 39 includes presentations held in professional development courses in 1935 that were arranged for foresters working in public administration. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes cultivation of seedlings in forest nurseries.
Norway spruce (Picea abies (L.) H. Karst.) is rarely the dominant species on dry mineral soil sites in Northern Finland. These sites are, in general, too poor and dry for spruce, and suit better for Scots pine (Pinus sylvestris L.). According to the study, the natural regeneration of spruce is in Northern Finland poor. In the sample plots, cones could be found in 35% of spruce trees in the stands in natural state and 46% in the harvested stands. Compared to the spruce areas in Northern Finland, or fresh mineral soil sites in Southern Finland, cone and seed production of Norway spruce was in dry mineral soil sites very low due to scarcity of seed trees and their low cone number. There were few spruce seedlings in the sample plots, but according to the observations, spruce is able to regenerate on lichen and heath covered sites. The seedling growth was, however, poor on dry sites. Spruce seedlings were often found near fallen trees and stumps. The growing trees prevent growth of seedlings of all species. Norway spruce seems, however, to be able to spread also to the poor sites. The success depends on the vegetation and dryness of the site. For instance, spruce can spread to dry mineral soil sites from seed trees of nearby peatlands.
The PDF includes a summary in German.
In this paper the development of sown Scots pine (Pinus sylvestris L.) seedling stands into forests is studied. The material was collected in stands sown in 1930–1940 in private forests in the Forestry Board districts of Central and Northern Ostrobothnia. The 119 areas, including both burned and other areas, were studied in 1955.
Most seedings had been carried out on relatively poor soils, mostly representing Vaccinium and Calluna type forests. 71% of the areas consisted of large forest fires, mostly from 1933. The most burned areas did not have seed producing trees nearby. The other sown areas were in general small, 1–2 ha, and near forests capable of producing seeds. The species of previous tree generation, in the older areas mostly pine and in the younger areas Norway spruce, affected tree species composition of the new tree generation.
Over 90% of the burned areas were in silviculturally good or satisfactory condition, while the main part of the other sown stands was in fair or poor condition. Weeding and thinning had been done only in the oldest stands. Most stands had been left untended. Natural new trees often competed with the sown pines, and cull-trees and border forest increased natural regeneration in the areas. In Calluna type the poor soil limited regeneration and growth of broadleaf trees. The worst competitors were naturally regenerated pine seedlings both on Calluna and Vaccinium type. On Vaccinium type also birch and sometimes also aspen (Populus tremula L.) competed with sown pine. On better sites and paludified areas competition by broadleaf trees increased. The rhythm of development of broadleaved trees is so different from pine that only those broadleaved trees that are formed in the stand when the pine seedlings are larger can develop harmoniously with pine. Due to the harmful competition, the seedling stands should be tended early on. In addition, it may be advisable to abandon the practise to leave trees on sowing areas.
The PDF includes a summary in Finnish.
Planning of large central tree nurseries, which has become topical in Finland, means that the seedlings will be used in a wide geographical area. The nursery must decide which proveniences of seeds of the different tree species it will use. This concerns also the customer that buys the seedlings. The planting and lifting of the seedlings in the nursery have to be timed so that the seedlings are in a right state of growth at the time of planting.
The growth of the seedlings can, under certain conditions, be promoted by using a slightly southerly seed provenience, and large-sized seeds. There are, however, limitations to how much the seeds can be transferred northwards. If the nursery lies much south of the planting site, the seedlings have started height growth at the time of planting. This applies especially larch (Larix sp.), Scots pine (Pinus sylvestris L.) and birch (Betula sp.), but affects less Norway spruce (Picea abies (L.) Karst.). The problem can be handled by using a cool storage space for the seedlings waiting for a delivery in the nursery.
According to an international study, seedlings grown from seeds collected in countries south from Finland usually die already during the first two years in the nursery. Within Finland the seeds can be transferred at least by two latitudes. Spruce seems to tolerate longer transfer. Seed orchards should be planted south of the seed’s origin to ensure better yield and better quality seeds.
The Silva Fennica issue 61 was published in honour of professor Eino Saari‘s 60th birthday.
The PDF includes a summary in German.
There are contrary opinions on the ability of Scots pine (Pinus sylvestris L.) seedlings to withstand oppression by hold-overs and recover after their felling. The recovery potential of oppressed pine stands in Southern and Northern Finland was studied using two kinds of material, fully recovered Scots pine stands and stands recently released. The volume and volume increment of the stand were measured, and the health of the sample trees was determined.
The study showed that those released pine stands that had been in oppressed state very long (25-60 years) had recovered after clear-cutting. After the release the stands grew at first slowly, but after recovery at about the same rate as natural normal stands of a similar height. The smaller, younger, and less stunted the seedlings were when they were released, and the better the site, the faster was the recovery. At the base of released pine stands various defects was detected. When the trees were released, the defects decrease their technical value. A heavy partial cutting had generally a disadvantageous effect on the stand. Recovering seedlings were found clearly to hinder the development of younger seedlings nearby. This inhibition seemed to be a result of the rapid spread of the root system of released pine trees.
The PDF includes a summary in English.
The aim of the study was to investigate effect of growth conditions on germination and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings in greenhouse conditions. Germination of seeds becomes markedly slower as the soil temperature decreases. It seems that low temperatures affect more Norway spruce than Scots pine. When temperature rises, the fresh weight of the seedlings increases more in pine seedlings than in spruce seedlings. Accordingly, lower temperatures affect less the weight growth of spruce seedling than that of pine seedlings.
An experiment testing how root competition affect germination showed that adjacent seedlings decrease germination of seeds more than shading with branches. The effect was strongest on pine and spruce seedlings when the shading tree species was fast growing birch (Betula sp.). On the other hand, shading affected most height growth of birch seedlings. Growing space can vary in relatively large range without it affecting greatly tree growth.
The PDF includes a summary in German.
The regeneration of forests in Hämeenkangas area in Southern Finland has been difficult due to various damages from the middle of the 1800s. Few seed trees were left in the area, and artificial regeneration has been used since 1880s. The area became an experimental area of the Forest Research Institute in 1924. The aim of the study was to survey the area before it was transferred to the Finnish Defense Forces.
The original Scots pine (Pinus sylvestris L.) forest of the esker area suffered from many forest fires. The total area is 13,000-14,000 ha, of which the experimental forests of Forest Research Institute cover 6,000 ha. The area is dry upland forest, and drought affects the survival of germlings. Soil frost is a major cause of loss of young seedlings. Sowing method affects the early development of the seedlings. Band sowing proved to be the best method regarding the soil frost. A total of 39 different harmful insect species, 8 pathogen species and 7 other causes of damages have been detected in the area.
The development of seedling stands follow a certain pattern, reported also in other studies. Many of the pine seedling stands develop well until they reach a certain height. After that seedlings begin to suffer from damages, but after reaching another stage develop normally. The damages affect the height growth of the seedlings. Some common damages are caused by Pissoides weevils, needle damages caused by certain beetles, shoot damages by Evetria resinella, and pine blister rust (Peridermium pini and Cronartium flaccidum).
The PDF includes a summary in GermanNatural regeneration has been common in Northern Finland, where forest fires have been usual, and the large areas make artificial regeneration expensive. The regeneration, and for instance tree species composition and density of the stand, cannot been controlled. In Northern Finland there is little demand for Betula sp. which is often abundant in the burnt areas. The unburned forests are generally Scots pine (Pinus sylvestris L.) or Norway spruce (Picea abies (L.) H. Karst.) dominated mixed forests with single Betula sp. trees.
The fire destroys birch for the most part in the Vaccinium site type, but the surviving trees produce enough seeds to regenerate the areas. The largest trees of Scots pine usually survive the fires. Pine has good seed years in the north only every 8th or 10th year. Spruce is totally destroyed in the forest fire and the seedlings grow poorly as primary species. The seedling stands are usually dominated by Scots pine and birch, but birch seedlings grow in batches, and do not hinder growth of pine. The drier Calluna site type stands are dominated by Scots pine. Birch seedlings may be abundant in the beginning, but most of them do not survive. Abundant emergent pine trees prevent the growth of seedlings especially in the dry site types, and they should be thinned to guarantee regeneration. Sowing results are better few years after the fire. The birch seedling should be removed from the seedling stands.
The PDF includes a summary in German.
The development roots of Norway spruce (Picea abies (L.) H. Karst.) seedlings was studied in sample seedlings grown in different kinds of sites. In the early stage, the seedling roots grow primarily length. The main root is usually long. If the growth of the root is hindered, the tip of the root dies, and the root system growing from the original root collar remains relatively small; in these cases, the secondary root system becomes more important. In unfavourable conditions the root branches can early on replace the main root. The main root of a germling seems to be less able to seek for free growing space than the main and side roots of older seedlings. When the growth of the root is blocked by some kind of obstacle, it does not often hinder the growth of the seedling. The type of soil influences strongly how the root system grows. In good soil and in humus the root system is regular and richly branched, while in clay and coarse sand the root system was small. Spahgnum moss was good substrate for seedlings, Dicranum undulatum moss little less good, while the seedlings grew poorly on Pleurozium Schreberi.
The PDF includes a summary in German.
The establishment of moose (Alces alces L.) winter feeding sites, their utilization and their effect on damage to young Scots pine (Pinus sylvestris L.) plantations was studied in Ruokolahti-Imatra area in Eastern Finland in 1987–89. During the period, the density in the area was about 3–5 moose/ 1,000 ha.
Six feeding sites were established by fertilization, offering mineral lics and the tops of aspen and Scot pine and by salting the tops of pine. The moose preferred the feeding site to control areas during both summer and winter. In winter browsing was very heavy, especially in those areas located in or close to traditional wintering areas. In winter no moose were seen in the summer habitats.
The extent of, and fluctuations in moose damage were studied in 47 Scots pine plantations in the immediate surroundings of the feeding sites (29 plantations), control areas (18 plantations) and also 68 randomly selected pine plantations. Before the experiment began in 1987 four plantations had been seriously damaged. During the study period only one plantation was seriously damaged. However, it could not be conclusively proved that damage to the pine plantations had been reduced as a result of the feeding sites. The results of the study can be put into practice elsewhere to create better living conditions for moose in their winter habitats. However, the food offered at the feeding site should be in the right proportion to the number of animals wintering in the area, so that the risk of damage to nearby plantations would be kept as small as possible.
The PDF includes a summary in Finnish.
The aims of the present study were to determine physical and physio-chemical properties of some Finnish forest tree nursery soils, and to examine relationships between these properties and the amount of organic matter in the soil.
The following soil tillage layer properties of 33 fields belonging to 8 forest tree nurseries were determined: soil particle size distribution, organic matter content, bulk density and density of solids, total pore space, soil water volume at potentials pF 2.0 and 4.2, available water content and air space at potential pF 2.0, active acidity, electrical conductivity index and cation exchange capacities at pH 4.5 and 8.0. The soil texture class of the tillage layer parent material was sand, only in a few cases did higher percentage of silt and clay indicate a morainic nature of parent material. The amount of organic material in the soils varied within wide limits, reflecting differences in amelioration policy between the single nurseries.
Relationships between the physical properties of the soil parent material and those related to fertility were in most cases strongly influenced by the amount of soil organic matter. Soil density values decreased as the organic matter content increased from 2 to 25%, giving rise to the increase in the total pore space. However, the amount of water held at potential pF 2.0 and the available water content did not increase with increasing organic matter content. This was due to the absence of the particle fraction in the sand. Nursery soil amelioration, involving in most cases a mixture of Sphagnum peat with sand, thus gives rise to an increase in the content of drainable water.
Cation exchange capacities were positively correlated with the organic matter content. However, the absolute number of exchange sites expressed as equivalents in the tillage layer did not increase in accordance with the increase in organic matter content due to the influence of the organic matter content upon the ratio of solids in the voids.
The PDF includes a summary in English.
An attempt was made in the study to determine the annual periods available for foliage spraying when cleaning Scots pine (Pinus sylvestris L.) dominated seedling stands. The study was made in nine experimental fields which were established in different parts of Finland. The spraying was applied throughout the growing season by DM, MCPA and Roundup. The results were inventoried one year after the treatments.
The results showed that there were big differences both in the destruction of hardwood sprouts and in the survival of pine seedlings due to the time period of the spraying. Threshold points were observed in the range of effect of DM and MCPA. By means of these it is possible to time the spraying treatments in such a way that there remains only slight damage to pine, but hardwood sprouts are destroyed totally. The results varied with Roundup so much, among other things due to rain, that such threshold points could not be determined. This preparation both had a milder effect on the hardwood seedlings and caused slighter damage to pine than the other preparations.
In Sodankylä in Northern Finland, the pines attained a good resistance to arboricides when the efficient temperature sum of the growing season was 550, but in Punkaharju in Central Finland only when it was 850. The seed provenance of the seedlings had an effect on the resistance. The threshold temperature sums of resistance in pine were on the average 70–74% from the long-term average number of degree days at the origin of the seed. The effect on the hardwood trees grew weaker as the long-term average was filled. Resistance of pine followed with a specific lag the lignification of the shoot and the ceasing of the growth of the needles.
The PDF includes a summary in English.
An attempt was made in this study to determine which nutrients and in what amounts should be used in the fertilization of Scots pine (Pinus sylvestris L.) seedling stands on nutrient-poor open bogs in order to obtain optimum seedling growth and to minimize the risk of elk damage.
The most important nutrient to improve seedling growth in the experiments was phosphorus. Already rather small amounts produced a significant effect although the effect of higher dosages seemed to be longer lasting. After fertilization also nitrogen gave significant increase in growth. The number of seedlings damaged by elk increased the most on N-fertilized plots. Also, phosphorus increased the occurrence of elk damage, but effect seemed to be related to the better growth and more suitable size of P-fertilized seedlings. The effect of potassium on seedling growth and on occurrence of elk damage was negligible.
The PDF includes a summary in English.
In 1965 and 1966 a total of 25 experiments were laid out in various parts of Finland in order to find out the effect of simultaneous variation in the intensity of drainage and fertilization on the development of plantations and natural seedling stands of Scots pine (Pinus sylvestris L.) growing on pine swamps. The fertilizer used was Y fertilizer for peat soils, a fertilizer mixture containing 14 % N, 18 % P2O5 and 10 % K2O. It was applied in rates of 500, 1,000 and 1,500 kg/ha. The ditch spacings studied were 10, 20 and 30 m. The present paper is a preliminary report on a series of studies, the experiments will be observation for a total of 15–20 years.
Mortality of the planted seedlings was found to be the higher after the first growing season, the larger the quantity of fertilizer that had been applied. Fertilizing caused an increase in seedling mortality even after the first growing season following application. At the end of the fifth growing season the height of both natural and planted seedlings is the greater, the larger the quantity of fertilizer that has been applied. Analysis of the height growth of the seedlings showed that larger quantities of fertilizer did not increase growth in the same proportion. The occurrence of growth disturbances is the greater, the more fertilizer has been applied.
Fertilization also changed the composition of ground vegetation. The in the beginning of the experiment birch (Betula sp.) was absent in the area, but was found in the stands the greater abundance the higher application of the fertilizer.
From the viewpoint of growth of the seedlings the best results were obtained with the greatest intensity of fertilization and the narrowest ditch spacing used in the study. The results also show that strong fertilization and a high degree of drainage intensity are not capable of bringing about any particularly good growth on peatlands which originally are relatively poor in nutrients. The growth values now obtained equal only one third of those obtained on peat soils of greater fertility.
The PDF includes a summary in English.
The aim of this study was to find out the planting vigour of Scots pine (Pinus sylvestris L.) stored over the winter either in winter storage mainly in the temperature of 4 – -6 °C or in nursery beds. The experimental planting included about 4,500 of 2+1 transplants in Northern Finland. In spring 1965 the control plants were lifted in the spring before budbreak and stored in closed bags in a cold store, in the following year the control plants were lifted in June when the growth had started.
Winter storage of pine transplants in a cold store, tightly closed into bags for the major period, did not, according to the results, increase plant mortality as compared to lifting in the spring. Soaking the stored-plant roots did not affect plant mortality. Mortality was rather small in all treated lots and probably more dependent on planting site and other local factors.
No consistent difference on the leader growth, needle length, bud number and plant grade was found between the plants stored over winter and those lifted in the spring. Sealing the plants into tight bags for winter proved to be suitable method, efficiently preventing water shortage in the plants. No moulds or fungal diseases were found in the plants. In the exceptionally cold 1965–1966 winter, temperature in the cold store sank to -15 °C, but in spite of the temperatures below the recommended storing temperature, the plants survived well. The reason was that the plants froze slowly in the fall and thawed out slowly in the spring.
The value of vigour grade in predicting plant-characteristic development proved to be good, and predicted plant development also in the following year fairly well.
The PDF includes a summary in English.