Current issue: 58(4)
The effects of two alternative formulations of sapwood senescence on the behaviour of model LIGNUM (with parameter values adjusted for Scots pine (Pinus sylvestris L.) growing southern Finland) were studied. The two alternatives were autonomous sapwood senescence assuming a maximum age for the tree ring, and sapwood senescence that is controlled by the mortality of foliage. For the latter alternative two hypothetical further mechanisms were stipulated. All the formulations were implemented in LIGNUM. Simulations were made with all model variants for fertile and poor soil conditions using high, normal and low rates of foliage mortality. The simulation results were compared against of a data set consisting of 11 open grown Scots pine trees from southern Finland. Observations of heartwood proportion were used in this study. They show that heartwood starts to increase in trees from age of approximately 20 years onwards. The simulation results showed no differences between fertile and poor soil conditions as regards heartwood formation. Of the variants of foliage-controlled sapwood senescence the one where death of sapwood in a tree segment induces sapwood senescence in the tree parts below only slightly was the best. This and the autonomous sapwood senescence corresponded equally well to the observations. In order to make more refined conclusions additional data and simulations are necessary.
Models for individual-tree basal area growth were constructed for Scots pine (Pinus sylvestris L.), pubescent birch (Betula pubescens Ehrh.) and Norway spruce (Picea abies (L.) Karst.) growing in drained peatland stands. The data consisted of two separate sets of permanent sample plots forming a large sample of drained peatland stands in Finland. The dependent variable in all models was the 5-year basal area growth of a tree. The independent tree-level variables were tree dbh, tree basal area, and the sum of the basal area of trees larger than the target tree. Independent stand-level variables were stand basal area, the diameter of the tree of median basal area, and temperature sum. Categorical variables describing the site quality, as well as the condition and age of drainage, were used. Differences in tree growth were used as criteria in reclassifying the a priori site types into new yield classes by tree species. All models were constructed as mixed linear models with a random stand effect. The models were tested against the modelling data and against independent data sets.
Seasonal fluctuations in free polyamines, spermidine, spermine, putrescine and potassium concentrations were studied for two years (1992–1993) in three needle years of Scots pine (Pinus sylvestris L.) grown on a drained mire in western Finland. Seven different fertilizer treatments involving five different sources of potassium were used.
Putrescine concentrations were high in winter and in May but low in summer. High peaks in putrescine in March and May could be found in unrefertilized or rock phosphate treatments. Spermidine and spermine concentrations were high in March and May. In December spermine concentrations were low. Biotite increased the needle potassium concentrations less than the other potassium fertilizers but the putrescine concentrations or the putrescine/spermidine ratio to about the same level. This suggests that biotite, although very slowly soluble, can reasonably satisfy potassium nutrition of young pine trees.
The potassium concentrations of needles in all the fertilization treatments were higher in winter than in summer. The response of putrescine to the potassium concentration was strongly negative in all the needle years and sampling times. In March, May and December the response of putrescine to potassium was fairly similar in both years but not in June and August. The results suggest that the potassium concentrations during the growing season cannot be used for estimating the potassium nutrition of trees, because the variation between the years may be substantial, whereas the needle putrescine concentration or putrescine/spermidine ratio indicates the suboptimum potassium status of Scots pine fairly well. Needle putrescine concentrations over 500 nmol g-1FW quite regularly coincided with a unsatisfactory potassium nutrition and concentrations over 1,000 nmol g-1FW were a reliable indication of potassium deficiency. Putrescine/spermidine ratios below 5 indicated a satisfactory potassium nutrition in all needle years throughout the year.
Nearly every forest land in Finland has been burnt down by a wildfire at least once during the past 400–500 years. Slash and burn cultivation (1700–1920) was practised on 50–75 percent of Finland's forests, while prescribed burning (1920–1990) has been applied to 2–3 percent of the country's forests. Because of land-use changes and efficient fire prevention and control systems, the occurrence of wildfires in Finland has decreased considerably during the past few decades. Owing to the biodiversity and ecologically favourable influence of fire, the current tendency is to revive the use of controlled fire in forestry in Finland. Prescribed burning is used in forest regeneration and endeavours are being made to revert old conservation forests to the starting point of succession through forest fires.
The prescribed burning of a 7.3 ha clear-cut and a 1.7 ha partially cut forest (volume 150 m3/ha) was carried out in Evo (61 °12'N, 25°07'E) on 1 June 1992. The forest was a mesic Myrtillus site type forest dominated by Norway spruce (Picea abies (L.) H. Karst.). Practically all the trees and the above-ground parts of the understorey vegetation died in the fire, while the mor layer was thinned by an average of 1.5 cm.
A study was made on the change of germinated seedling population in time and their dependence on environmental factors. Seedlings of Norway spruce, Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth), pubescent birch (B. pubescens Ehrh.) and rowan (Sorbus aucuparia L.) were inventoried in 1993 and in 1994 on permanent plots, four times per growing season. Autoregression models were used to compare regeneration of tree species in the burned forest with regeneration in the burnt clear-cut area, and to study the effect of distance from nearest seed source to regeneration.
The average number of seedlings germinating in 1993 was higher than in 1994, probably because of differences between these consecutive years in regard to the amount of seed rain and weather conditions. The number of Norway spruce and rowan seedling was higher inside the forest area than in the clear-cut area. The distance to the bordering forest and to the closest seed tree did not explain the result. It is suggested that the more stable microclimatic conditions under the shade of dead tree promote germination and seedling establishment in the forest area. As rowan is a bird-dispersed species, it is likely that dead trees help the dispersal of rowan seed by providing birds place to sit and defecate. The shade provided by dead trees may influence the further succession of the tree stand and vegetation composition and diversity.
The biomass production and nutrient uptake of silver birch (Betula pendula Roth), downy birch (Betula pubescens Erhr.), grey alder (Alnus incana (L.) Moench), native willows Salix triandra L. and S. phylicifolia L. and exotic willows S. x dasyclados and S. ’Aquatica’ growing on a clay mineral soil field (Sukeva) and on two cut-away peatland areas (Piipsanneva, Valkeasuo) were investigated.
Biomass production of downy birch was greater than that of silver birch, and the biomass production of the native willows greater than that of the exotic ones. The performance of S. phylicifolia was the best of the studied willow species. Exotic willows were susceptible to frost damage and their winter hardiness was poor. The production of all species was lower on the clay mineral soil field than on the cut-away peatland areas. Fertilization of birches and alder – on the double dose given to the willows – increased biomass production. After 6 growing seasons the leafless biomass production of fertilized silver birch at Piipsanneca was 21 t ha-1 (at Valkeasuo 34 t ha-1) and of grey alder 24 t ha-1, and that of S. triandra after five growing seasons 31 t ha-1, S. phylicifolia 38 t ha-1 and of S. x dasyclados 16 t ha-1.
6-year-old stands of silver birch bound more nutrients per unit biomass than downy birch stands. Grey alder bound more N, Ca and Co but less Mn and Zn per unit biomass than silver and downy birch. On the field more P was bound in grey alder per unit biomass compared to downy birch. The willows had more K per unit biomass than the other tree species, and the exotic willow species more N than the native ones. Less N, K and Mg were bound per unit biomass of S. phylicifolia compared to the other tree species.
The ability of one-year old Scots pine (Pinus sylvestris L.) seedlings to reharden during the dehardening period was studied. Naturally hardened quiescent seedlings were preconditioned at 0°C for ten days and then placed in chambers at different forcing temperatures with different light regimes. The forcing periods were followed by cool periods. Changes in frost hardiness were monitored at intervals using freeze tests of whole plants. Frost hardiness was assessed by three methods: impedance, survival and growth retardation. Dehardening seemed to be a partially reversible process, i.e. in some growing conditions slight rehardening was found.
The PDF includes an abstract in Finnish.
Refertilization with PK, about 15 years after the first fertilizer application, increased tree growth and the amount of nutrients in tree litter in Scots pine (Pinus sylvestris L.) and birch (mainly Betula pubescens Erhr.) stands on a drained fertile mire in Northern Finland (65°34 N’, 25°42’ E). The increase in growth and nutrient contents after refertilization was greatest in the mature pine stand where the application of nitrogen and micronutrients gave an additional response compared to the PK-application.
The PDF includes an abstract in Finnish.
The occurrence of Caleopsis bifida on clear-cut and burned forest soil and its disappearance in 4–6 years after disturbance is attributed to its germination ecology. Initially the seeds are dormant 96–100% and remain dormant in nylon gaze bags in different types of forest humus layers at least 10 years. Dormancy is released in laboratory (1) by treatment of 100 ppm aqueous solution of GA3, (2) by heating the dormant seeds to 40–55°C for 1–5 h, and (3) by 1% KNO3 solution. It is concluded that conditions in clear-cut and burned areas favour germination of seeds in regard to temperature and content of nitrates in contrast to humus of closed vegetation where the seeds remain dormant.
The PDF includes an abstract in Finnish.
This study deals with the succession of vegetation and tree stand in 16 mesic Myrtillus site type Scots pine (Pinus sylvestris L.) plantations after prescribed burning in Evo, Southern Finland. The oldest tree stands studied were about 30-year-old. The growth of trees followed the height index of Myrtillus type. The vegetation was first mesic, dominated by grasses and herbs, turning more xeric after four years. This change was accelerated by treatment with herbicides. After the closure of tree stand, vegetation became more characteristic of forest vegetation, but pioneer species and composition disappeared slowly. The basic characters of vegetation succession could be clearly described by DCA ordination and TWINSPAN classification. The study confirmed that Myrtillus type has succession phases which are typical for each age phases as Cajander’s forest site type theory has proposed. However, differences in primary and secondary site factors have their own effects on the vegetation of the succession phases.
The PDF includes an abstract in Finnish.
In the model the regeneration process is derived into three subprocesses: birth, growth and mortality of seedlings. The main emphasis is on the birth process where the following phases are simulated: seed crop, quality of seeds, maturity of seeds, predation of seeds and germination. The parameters are based on data published in Finland. Part of the parameters are obtained directly from the investigations and part is proposed by the author. The model can be calibrated by changing parameter values. The simulation is made with the help of random numbers which have the same means as the estimates and the same distributions as the residuals of the equations used in simulation. The time step of the model is one year. The number of emerged seedlings in one year is obtained by multiplying the seed crop with the probabilities that the seed passes different phases of the birth process. Because of stochasticity the regeneration period is simulated several times. From the results it is possible to evaluate the risk and succeeding probability of the regeneration. The main drawbacks of the simulation method are the lack of empirical parameters and the difficulty of testing. The model could be further developed by including spatiality into the model.
The PDF includes an abstract in Finnish.
A model was developed in order to describe the peeling of veneer for determining value relationship for birch veneer logs and stems. The model was based on selling prices of veneer and other products as well as processing costs. The model was utilized for determining the effect of various input variables on the log value.
According to the results, the effect of tree size was important for the value of raw material. Even knottiness had an effect although only in the higher manufacturing costs of knotty veneer were taken into account. Pruning was a method to increase substantially the proportion of knotless veneer.
The PDF includes an abstract in English.
The susceptibility of Betula pendula Roth and B. pubescens Ehrh. Saplings to stem spot disease caused by Godronia multispora J.W. Groves and Fusarium avenaceum (Fr.) Sacc. was studeied. B. pendula proved to be more susceptible than B. pubescens on all studied soils, especially on peat. G. multispora was more pathogenic than F. avenaceum. Inoculations with G. multispora in the spring and summer induced smaller cancers than in the autumn.
The PDF includes an abstract in Finnish.
There are great impact forces in mechanized harvesting and wood yard in the mills which can cause breaks in timber. The impact strength of timber in green condition was tested in temperatures of +18°C and -18°C using sawn pieces (20 x 20 x 300 mm) of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), birch (Betula pendula Roth and B. pubescens Ehrh.), grey alder (Alnus incana L.) and aspen (Populus tremula L.). In addition, unbarked naturally round sticks (length 300 mm, diameter 15 and 35 mm) of the same species were tested.
The impact strength of round sticks was 1.5–4.4 times as great as that of sawn pieces. The reasons are possibly the avoidance of cell breaks at the surface as well as growth stresses. The frozen samples were clearly weaker than the unfrozen ones. As a rule, the impact bending strength increased with increased density of the species. However, the correlation varied greatly between species. If density was kept constant, an increase in the growth ring width decreased the impact strength. The reason may lie in the fracture mechanism.
The PDF includes a summary in English.
The study deals with the interaction of various soil preparation and reforestation methods. The most favourable time of the year for broadcast sowing and the effect of stabilization after soil preparation on restocking were studied as special problems.
Prescribed burning, scalping and disc ploughing made a better combination with sowing than planting, and ploughing better combination with planting than sowing. The longer the period was between sowing and germination the fewer seedlings emerged. The best stocking was clearly resulted with sowing in June. Stabilization of soil after preparation had a negative effect on reforestation results.
The PDF includes a summary in English.
Young Norway spruce (Picea abies (L.) H. Karst.) are susceptible to early summer frost damage. Birch (Betula pubescens Ehrh.) naturally colonize rich or fairly rich drained peatlands after clear cutting, and can provide protection for developing seedlings. The report describes the development of spruce stands after various types of handing of the birch nurse crops.
Different proportions of birch and spruces did not have any influence on the spruce stand production. In cases where the nurse crop stand is removed when the spruce stand age was 20 years and height 4 m the spruce suffered badly but recovered with time, reaching the spruce stand growing under a nurse stand within the next 20 years. The height growth of spruce depends on the density of the nurse stand, especially on fertile sites. The development of diameter growth also depends on the density of the nurse trees. Removal of the nurse stand in spruce stands on the sites concerned should be done when the spruce stand is 20 years old and at the height of 4 m.
The PDF includes a summary in English.
Surface temperature during two prescribed burnings were measured in 1983 in Evo, Southern Finland. Surface temperatures in relation to the amount of slash burned, energy released during the fires, and the fire intensities were studied. The fire intensity was also measured during a third burn. The Lake Nimetön site was burned int the end of May. Due to the uneven distribution of slash, colonization by Calamagrostis arundinacea and the spring moisture, the burning was very uneven. Surface temperatures varied between 410–809°C and the intensity of fire was low (range 0–900 kW/m).
The fire intensity on the other sites burned in May was also low (880 kW/m). During the burn in August the surface temperatures varied between 701–869°C and the intensity of fire was moderate (1,170 kW/m). Slash was burned more evenly and more thoroughly due to the dryness of the site and slash and the fact that grasses and other herbs were not abundant.
The PDF includes a summary in Finnish.
The yield of Gyromitra esculenta (Pers.) Fr. was surveyed during 1973–82 in a Norway spruce (Picea abies (L.) H. Karst.) dominated stand in Central Finland. The soil surface was treated with different light methods, mainly removing the vegetation and humus layer.
It was shown that is possible to improve the natural yield of G. esculenta by breaking the soil surface. In the 286 m2 of treated the yield could be improved over 50 fold compared to the control area. In the untreated control area, the yield per hectare was 0.98 kg/yr. In treated plots the yield was 52.4 kg/yr (in the best year 191 kg/ha/yr). Fruit bodies of G. esculenta were found in treated plots every year after the soil treatment. The yield was at its best in the two first years declining later to the level of 10–20% of the first year’s yield.
The best natural yield was reached in the last year. The previous year’s precipitation was an important factor influencing the yield of the mushroom.
The PDF includes a summary in English.
The anatomical variation of a lateral root was compared with that of the stem of the same tree at breast height by concentrating on the intrelationships of certain anatomical features in Betula pendula and B. pubescens. The results showed that root wood has several essential features of stem wood, such as gelatinous fibres, growth eccentricity, scalariform perforation plates in the vessels and pith flecks. However, some of the anatomical differences are significant. The differences between the species were more pronounced in the root than in the stem anatomy.
The PDF includes a summary in Finnish.
Ten trees of mountain birch (Betula tortuosa Ledeb, now Betula pubescens subsp. czerepanovii) with an average age of 39 years were sampled in northern Lapland in Finland. The average green density of wood was 589 kg/m3 and that of bark 941 kg/m3. The basic densities were 520 kg/m3 and 559 kg/m3, respectively. The basic density increased only little from the pith to the surface. In contrast, the number of bars in the perforation plates of the vessels increased considerably in the same direction. The average number of bars was 17.3.
The PDF includes a summary in Finnish.
Downy birch (Betula pubescens Ehrh.) trees growing on a drained peatland were cut during dormancy. The properties of the one-year old shoots produced by the stumps were measured in the autumn after one growing season. The one-year old willow shoots (a mixture of Salix phylicifolia L., S. pentandra L. and S. caprea L.) were collected from an abandoned field.
The basic density of unbarked shoots was 443 kg/m3 for birch and 346 kg/m3 for willow. The basic density of the bark was much higher than that of the wood. The effect of shoot length on the properties was small with the exception of cellular proportions. The fibre percentage increased and vessel percentage decreased with increasing shoot length.
The PDF includes a summary in Finnish.
Length variation of fibres and vessels was studied in the branches, stems and roots of Betula pendula Roth and B. pubescense Ehrh. The cells were significantly shorter in the branches and roots than in the stems. There was no significant difference in the cell length between the upper and lower radii of the branches and roots. The length increased from the pith to the surface and decreased in the branches and stems from the base onwards. In the roots the length increased in that direction. The differences between the tree species were small although the cells of B. pubescens were a little longer.
The PDF includes a summary in Finnish.
Variation of wood characteristics was studied in two mature trees of Betula pendula Roth and two of B. pubescens Ehrh. by stressing the interrelationships of some of the structural features, basic density and shrinkage. Correlation analysis revealed that basic density was related to some of the variables studied, viz: number of rings (age) and distance from pith, height from the ground, ring width, fibre length and double wall thickness. Multiple regression equation showed that age from pith and height from the ground explained 80% of variation of basic density in B. pendula. Two structural variables, viz: fibre wall thickness and ring width accounted for only 28% of variation of basic density in B. pubescens. No significant relations could be found between shrinkage and any of the wood parameters measured in B. pendula while some of the relationships were significant in B. pubescens. However, only 55% of variation of volumetric shrinkage was explained by two related factors, viz: basic density and moisture content while only 35% of variation of tangential shrinkage was explained by ring width and fibre width. Increase in fibre length was highly associated with the increase in fibre width, double wall thickness and vessel length in either species.
The PDF includes a summary in Finnish.
It was concluded on the basis of the anatomical investigations of four mature trees that Betula pendula Roth can be distinguished from B. pubescens Ehrh. using the number of bars per scalariform perforation plate as an identification factor. If the average number of bars is more than 17.6, the sample is probably from B. pubescens, and if less, from B. pendula. The accuracy can be slightly improved by using the vessel frequency as another factor.
The PDF includes a summary in Finnish.
Samples that had extensive pith flecks, caused by the larvae of Dendromyza betulae (now Phytobia betulae E.Kang), were collected from two trees of Betula pendula Roth and two B. pubescens Erhr. The age of the trees varied from 45 to 56 years. The effect of larvae injury on the rays was studied. The width of affected rays in both species was more than twice that of normal rays. The height and frequency also increased considerably. When describing the anatomy of Betula species the pith flecks should be treated with caution in order to avoid confusion and misinterpretation.
The PDF includes a summary in Finnish.
Man and the Biosphere (MAB) programme of UNESCO was launched in 1970. This interdisciplinary programme represents a new integrated approach to research, training and action aimed at improving man’s partnership with the environment. It consists of 14 project areas.
The Academy of Finland and the Finnish Committee for the MAB, in cooperation with the University of Helsinki and the city of Tampere organized a seminar with an aim of reviewing the execution of the Finnish participation in the MAB project No. 2. The seminar took place at Hyytiälä, a forest research station of the University of Helsinki, on August 24–25 1978.
During the seminar, an excursion was made to Pyynikki esker, a unique natural park close to the centre of the city of Tamper. Eight papers were presented and discussed in the seminar. The papers are published in this issue of Silva Fennica.
The PDF includes a summary in English.
Ashed tree samples from sound and decayed Norway spruce (Picea abies (L.) H. Karst.) were studied by means of fast neutron activation analysis, and for comparison, also by X-ray fluorescence analysis. In fast neutron activation analysis, the following elements were detected: (Na), Mg, Al, Si, K, Ca, Mn, Rb, Sr and Ba, and according to the results of the X-ray fluorescence method the elements present in the wood samples were: K, Ca, Mn, Rb, Sr and Ba. A general diminishing was revealed by both methods in most elemental concentrations studied, with exception of K and Rb, when going from a sound tree to a decayed one. The use of the ratio of the amounts of potassium to calcium as an indication of the degree of decay is therefore proposed.
The PDF includes a summary in Finnish.
The aim of this study was to determine under what conditions and with what premises the growing of Betula pubescens Ehrh. is an economically competitive alternative to the growing of Scots pine (Pinus sylvestris L.) in drained peatlands. The basic material consisted of all drainage projects in Ostrobothnia in Western Finland in 1937–38 and 1957–59, according to the archives of the Central Board of Forestry Tapio, including such areas that were at least moderately fertile and had birch dominated young stands or no tree cover. A total of 202 sample plots were measured.
According to the results, the discounted timber yield of the thinned B. pubescens stands is about 10% greater than that of untreated stands. The removing of birch seedlings and the subsequent growing of fully stocked Scots pine is more profitable than growing B. pubescens stands only if the establishment and subsequent development of the pine stand involve no costs. If the site in question is a fertile open drained peatland, establishment of a pine stand is obviously a better financial proposition than a naturally regenerated birch stand. However, if there is already a fully stocked young birch stand on the site, it is more economical to let it grow using a shortish rotation time.
The PDF includes a summary in English.
In the boreal zone, the environmental control of growth rate, i.e. the rate of irreversible change in shoot dimensions, is assumed to be dominated by temperature. Promnitz (1975) emphasises that in boreal and temperate zones storage of photosynthetic products is an essential part of the growth process, and thus direct interaction between growth rate and radiation is not evident. The aim of the present study was to investigate the control of daily structural matter production in populations of Avenella flexuosa (L.) Drejer. Special attention was paid to the role of temperature and radiation in addition to the self-regulation of the plants themselves.
Temperature and self-regulation were found to explain over 90% of the daily variation of growth rate. Introduction of radiation into the analysis did not increase the explanatory power of the growth model based on temperature and self-regulation.
The PDF includes a summary in Finnish.
The study was carried out in order to find out the changes taking place in germination of seeds in certain tree species as a function of gamma irradiation, the height growth of the seedlings produced and the types of phenotypic mutants possibly found in the generation that had received radiation. The tree species studied were Pinus sylvestris L., Picea abies (L.) H. Karst., Betula verrucosa (Betula pendula Roth), B. Pubescens Ehrh., Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench.
Soaked seeds that had received a rather small dose of radiation germinated usually better than storage-dry seeds, B. pubescens being an exception. The damages observed in germination, height growth and the relative number of mutants were greater the higher the irradiation doses. The LD50 dose (germination, 28 days) was as follows in the case of the different tree species (storage dry/soaked): P. Sylvestris 1,500-2,000/2500-3,000, P. abies 1,000-1,500/4,000-4,500, B. pendula 9,500-10,000/7,000-7,500, B. pubescens >10,000/7,500-8,000 and A. Glutinosa 10,000/8,500-9,000 rad. Mass production of different mutants of deciduous trees for ornamental purposes, for example, appears to be easy using gamma-irradiation. On the other hand, the possibility of increasing tree growth remains open for further study.
The PDF includes a summary in English.
The ash content has been found to correlate with the fertility of peatlands. Relationship between height of 80-year-old stands and ash content of peat in topmost 30 cm layer was examined in Lithuanian conditions. On drained peatlands with ash content of peat from 3% to 8% pine stands increase in height. Ash content of peat being about 7% Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands on drained sites are found to be of equal height. Ash content of peat more than 8–9% has no significant effect on growth of pine or spruce stands. Birch (Betula verrucosa (B. Pendula Roth.) and Betula pubescens Erhrh.), stands are less sensitive to ash content of peat compared with other species. Black alder (Alnus glutinosa L. Gaertn.) stands occurred in sites with ash content of peat more than 8–10%. The height of the stands become equal both in drained and undrained sites in the cases where ash content of peat is about 16–18%. Ash (Fraxinus exelsior L.) stands attain high productivity on drained sites with ash content of peat about 20%.
The PDF includes a summary in English.
The objective of this investigation was to study the influence of stand density of white birch (Betula pubescens Ehrl.) on the minimum temperatures in the stand during the growing season, and the actual minimum temperatures of the leading shoot of Norway spruce (Picea abies (L.) H. Karst.) seedlings growing in the open. The 40-year-old uniform white birch stand was situated in 142 m above the sea level in Southern Finland. The stand was treated with thinnings of three different densities in 1961.
Air temperature was recorded in four sample plots at heights of 0.1 m, 0.5 m, 1.0 m, 2 m and 4 m. In the stand of moderate density, temperatures were measured at heights of 6.0 m, and in the stand of full density at 6.0 m, 8.0 m and 10.0 m.
The temperature differences between stands of various densities proved to be rather small. Especially the thinnest stand differed very little from the open area. The soil surface has in all cases been warm compared with the higher air layers indicating meadow-fog-type by Geier (1965). On cloudy or windy weather all the temperature profiles in the various stands resembled each other. The difference between the air temperature and temperature of the spruce shoot was greatest at midnight and decreased steadily thereafter.
The problem in using shelter stands for spruce regeneration areas is that optimum shelter stand density is difficult to define. Already a thin shelter stand causes drawbacks to the young seedlings, but in order to be effective enough against early frosts, the shelter stand should be comparatively dense.
The PDF includes a summary in English.
The study is continuation of the earlier structure and growth studies of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) in Forest Research Institute. The material represents birch stands (Betula verrucosa, now B. pendula, and B. Pubescens L.) in Southern Finland. The stands were treated with different fellings, and in regard to their silvicultural condition classified as good, satisfactory and unsatisfactory. Height of the trees, height of living crown, volume, increment and volume increment and development of stem diameter series was measured.
The most characteristic difference between the silviculturally good and poor stands was that the the annual increment of the good stands concentrated into large size trees, and the increment of unsatisfactory stands into small and inferior trees.
It is concluded that if the aim of stand treatment is to produce large and high quality volume increment, the most favourable stand volume of birch stands, compared with naturally normal stand volume, seems to be 90-85% at the age of 41-55 years, and 80-70% at the age of 56-65 years. If growth of large size trees is aimed at, the maximum number of the dominant trees per hectares cannot be more than 400 at the age of 50-60 years.
The article includes a summary in English.
Prescribed burning has reported to avail forest regeneration, for instance, by releasing nutrients for the use of seedlings, changing the pH of the soil and decreasing competition of ground vegetation. The aim of the study was to find out if the effects could be verified. Sample plots were measured in the experimental area of Tuomarniemi, in Central Finland, both in previously burned and untreated seedling stands and young forests. The main species in the sample plots was Scots pine (Pinus sylvestris L.).
According to the results, prescribed burning prepares the soil for regeneration. Germination percentage of the seeds is higher on the burned soil. All the species, Scots pine, Norway spruce (Picea abies (L.) Karst.) and birch species (Betula sp.) grow faster. Prescribed burning increases the amount of birch seedlings by improving its regeneration compared to unburned sites. The seed trees survive burning better if they are tall and have short crown, and have thick bark. In general, prescribed burning improves regeneration in seed tree stands.
The article includes a summary in German.
There are three theories regarding the stem form of trees. The stem form plays a role in ability of the tree to resist wind and wind breaks. This article presents the theory and experiments about mechanic stem form theory. The wind velocity in a forest stand and the coefficient of resistance at the tree crone and at the tree stem are calculated. The hypothesis about the point when the tree stem breaks is discussed. The approximate values of different calculations are presented.
The article is based on the writer’s visits in the area in 1933 and 1939. Pyhätunturi national park was established in 1938. The fell of Pyhätunturi rises up to 540 meters above the sea level, and 357 meters above the surrounding area. The soil is predominantly stony, and the rock is quartzite. The climate is continental with low rainfall. This results in a barren area, where array of plant species is limited with the exception of few gorges with fertile river valleys. The forests have remained mostly in natural state.
Vegetation is arranged in three zones: forested area, subalpine fell birch area and alpine bare top of the fell. Scots pine (Pinus sylvestris L.) forms timberline more often than Norway spruce (Picea abies (L.) H. Karst.). Coniferous forests rise up to 365 meters on the northern slopes and up to about 385 on the southern slopes of the fell. It is followed by fell birch zone (Betula tortuosa, now Betula pubescens subsp. Czerepanovii) up to about 450-475 meters on the eastern and northern slopes, and 475-490 meters on the western slopes. The most common forest site type is Empetrum-Myrtillus site type. Herb-rich spruce swamps along the rivers have highest diversity of species. The article describes the plant species found in forests, peatlands, fell birch zone and top of the fell in detail. In all 162 different vascular plant species and 16 non-indigenous species were found in the area.
The article includes an abstract in German.
The objective of the present investigation was to clarify the profitability of pruning silver birch (Betula verrucosa, now Betula pendula Roth) in the growing of raw material for veneer industry. Calculations were made on the grade, value, and price of pruned and untreated butt logs as well as on costs of pruning and the development of pruned trees.
The grade distribution of unpruned veneer butt logs, the grade distribution of the veneer yield, and consequently, the value of veneer yield and log prices at the plant are considerably better than those of average logs. The grade, value and price increased with increasing diameter. The value and price of pruned butt logs depended primarily on the difference between the turning pruning diameters, and their increase with decreasing pruning diameter and increasing turning diameter. The value of pruned butt logs is always considerably higher than that of unpruned logs. The increase in the value correlates to the pruning and turning diameters, and is, for example, in rotary-cut logs which have been pruned when 10 cm in diameter 80–130%.
Pruning increases the stumpage in naturally regenerated silver birch stands on Oxalis-Myrtillus site by 2,000–3,000 Fmk/ha when employed at 20 years of stand age and rotary cutting at 60–80 years of age respectively. The average pruning costs on Oxalis-Myrtillus site are 51–57 Fmk/ha.
The PDF includes a summary English.
Prescribed burning is a common silvicultural practice in northern Europe, intended to destroy the slash and ground vegetation and to reduce the thickness of the raw humus layer prior reforestation. The purpose of the experiments was to study whether there are any differences in the commencement and early development of mycorrhizal infection between burned and unburned areas. A clear-cutting area was burned on May 1961. The soil was rocky moraine, the forest type was Vaccinium type. Two weeks after burning Scots pine (Pinus sylvestris L.) was sown in patches.
According to the results, mycorrhizal infection took place on the unburned area earlier than on the burned. The difference was relatively small, perhaps 1–2 weeks. Although burning kills mycorrhizal fungi, it did not cause serious harm to the seedlings, on the contrary, the favourable influence of burning was more distinct. The high temperatures caused by the fire are restricted in the soil in a prescribed burning only a few centimetres deep. Although the mycorrhizal fungi are concentrated in a very thin surface layer of the soil, some mycorrhizae are situated deeper, and from there the fungi are able to infect roots and spread back to the surface layer. The fire also rises the pH of the soil, which can be harmful for mycorrhizal fungi. Even this effect, however, is limited to a thin surface layer.
The PDF includes a summary in Finnish.
Prescribed burning has been used in regeneration areas in Finland as a method to treat the humus layer and creating more favourable chemical, physical and biological conditions for the seedlings. At the same time, fire clears away seedlings and shoots of unwanted trees and other vegetation. Direct sowing or planting, mostly Scots pine (Pinus sylvestris L.), seldom natural regeneration, is used. In this paper, the initial stages of the formation of a new tree generation of Scots pine and Norway spruce (Picea abies (L.) Karst.) on prescribed burned areas is studied in Central Finland in 1956–1960.
The burned area remains almost without vegetation for about two growing seasons. Conditions on a burned area which has not been tiled are very unfavourable for germination of seeds of coniferous and deciduous trees. On the other hand, shoots of deciduous trees occur soon after burning. Conditions for regeneration were found to be better 3–5 years after burning. Removal of humus layer in spots improved regeneration. However, the patches facilitated also natural regeneration of Norway spruce and especially birch (Betula sp.), which compete with Scots pine seedlings.
Continuous rainy periods improved the germination of Scots pine and Norway spruce seeds sown on the humus layer. Pine and spruce developed more rapidly on the exposed soil, however, young seedlings were easily destroyed. Seed eaters destroyed the pine and spruce seeds sown on the humus layer of newly burned areas completely or almost completely. The viability of pine seeds sown on the burned humus layer did not decrease for three weeks, but the viability greatly weakened after six or more weeks. Spruce seeds lost their viability faster than pine seeds.
The PDF includes a summary in Finnish.
The objective of the investigation was to determine the differences between faultless timber grown on a peatland before and after draining, in respect of compressive strength to the grain, volume weight, and shrinkage. In addition, the influence of the boundary zone between the close-ringed wood formed before draining and the wide-ringed wood produced after draining on strength of the timber was studied. The material consisted of 15 sample trees of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), white birch (Betula pubescens Ehrh.) and silver birch (B. Pendula Roth).
The volume weight of wood of the tree species in ascending order is; spruce, pine, white birch, silver birch. The volume weight of Scots pine seems to decrease from the butt end upwards, while no trend was revealed for spruce. In the coniferous trees, the wide-ringed wood formed subsequent to draining was slightly lighter than the close-ringed wood produced prior draining. No distinct trend was seen in the birch species. The volume weight of pine and spruce increased with decreasing width of the growth rings up to a certain limit, after which the conditions inverted.
The compressive strength of the different kinds of wood seems to increase from the butt end upwards, but after height of two meters it begins to decrease considerably. In birch, this point of inversion is in somewhat greater height. In spruce timber, the compressive strength parallel to the grain is lowest for wood which contains exclusively wide-ringed wood formed after draining. The boundary zone between the woods formed before and after draining is very distinguishable, but has no remarkable influence on the compressive strength parallel to the grain. Shrinkage of close-ringed wood is higher in all three principal directions than that of wide-ringed wood. This can be explained by the variations in volume weight and fibrillar orientation of the tracheid walls.
The PDF includes a summary in English.
Prescribed burning has been used to treat the mineral soil sites, but the method has been little used in drained peatlands. The course and methods of prescribed burning in drained peatlands, and the effect of burning on sprouting of broadleaved trees, growth of ground vegetation and regeneration of Scots pine (Pinus sylvestris L.) by sowing was studied in drained pine bogs in Southern Finland. The top layer of the peat was mostly Sphagnum peat. The material included a prescribed burned 12 ha drained peatland area in Tuomarniemi district, in addition to which ten previously burned areas were investigated.
The burning had succeeded mostly well, but also unsuccessfully burned sites were observed. Estinguishing of the fire was easy, and no peat fires occurred. The fire burned only the logging residue, ground vegetation and the dry top layer of the peat. The roots of brushwood and grasses survived in the peat that insulated the top layer from the heat. For instance, the abundance of cloudberry (Rubus chamaemorus L.) increased after the fire. Similarly, burning did not affect sprouting of the stumps of downy birch (Betula pubescens Ehrh.). It cannot thus be used as a method to restrict the growth of coppice in regenerated areas. The seeds of Scots pine germinated well on the burned surface. 46% of the seeds developed to seedlings on sphagnum-shrub vegetation and 16% in feathermoss-shrub vegetation.
The PDF includes a summary in German.
The investigation concerns with the strength of the eccentric growth accompanying formation of tension wood in silver birch (Betula pendula Roth.) and downy birch (Betula pubescens Ehrh.), behaviour of wood in wood-working machines and its macroscopic characteristics, its microscopic and sub-microscopic structure, chemical composition, resistance against certain chemicals, physical properties, and the strength characteristics of wood.
The most detrimental properties of tension wood used in wood working industry are high longitudinal shrinkage, warping, twisting and checking. The wooliness of the cut is unwanted, for instance, in plywood and furniture. In pulp industry tension wood is better raw material than normal wood because it yields more and purer cellulose than normal wood. However, it has poorer strength properties.
The PDF includes a summary in English.
Birch wood is used widely in wooden structures where mechanical strength is needed. The aim of the research was to study the influence of the relative share of mechanically weak tracheids, and length of the wood fibers on specific gravity and bending strength of downy birch (Betula pubescens Ehrh.) wood. According to the results, the strength of wood is strongly dependent on the relative share of tracheids, and length of the libriform cells. The strength of the wood increases when the share of tracheids decreases and the length of libriform cells increases. The specific gravity can be used as an indication of the strength of wood, especially if it is possible to analyze the structure of the wood.
The PDF includes a summary in German.
The subarctic-subalpine mountain birch forest zone discerns Fennoscandia from other northern regions. The zone offers protection against wind to animal life, protects soil from evaporation and increases humidity. The article reviews distribution of vertebrate and butterfly species in the birch forest zone. There are no vertebrates that occur solely in the birch forest zone, and only few live mostly in the zone. Many species live either both on the birch forest zone and the treeless fell area above it, or in the birch forest zone and coniferous zone below it. Similarly, no butterflies occur only in the birch forest zone, but the zone is the main habitat for some species. Consequently, the subarctic-subalpine birch forest zone cannot be considered to be an independent ecozone but a transitional zone between regio silvatica and regio arctica that is nearer to the northern coniferous zone than the fell region
The PDF includes a summary in German.
The article describes in vivid style the development of the forest use and the forest science. The work of prof. Cajander is also praised.
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander.
The article begins on the page 27/122 of the PDF file.
The first part of the text deals with a general presentation of the geographical, biological and cultural conditions of the studied areas. The second part presents the characteristics of vegetation classified according the forest types, with lists of species. Forested areas, open lands and swampy areas are dealt with separately. The Saoneshje peninsula is presented separately.
The third part of the text discusses the similarities of the natural conditions between studied area and respective part of Finland. The vegetation and amount of species is clearly more diverse in studied area than in parts of middle-Finland. The study shows that in respect to vegetation Onega-Karelia cannot be seen as a part of the same region than Finland.
The here published speech of Cajander presents the academic career of J. P. Norrlin as a researcher, teacher and influential person in the Finnish scientific society. It also sheds light on Norrlin’s person and thoughts. The highlights of his scientific merits are presented. There are many extracts of his correspondence included in the article that describe Norrlin’s thoughts and interest.
The most abundant tree species occur in different variants in different geographical regions. They differ in their genetic, biological and partly also in morphological characters, however making clear difference between these subspecies is not possible. The different subspecies have developed according the respective areas' climatic and soil conditions, developing adaptive characters. These subspecies play a great role in practical forest management, since they differ in for forestry important characters, such as cold tolerance or stem form.
The subspecies hybridize with each other in areas where their distribution areas overlap. In these areas the subspecies cannot be always clearly defined.
In South-West Finland the usual method to make leaf fodder for cattle has been to cut the branches and collect the new sprouts again next year. According to this review, the most common tree species to be topped is Betula sp. Downy Birch (Betula pubescens Ehrh.) grows shoots easier than silver birch (B. pendula Roth). The topped forests are usually small and situated near the settlements, next to the fields and meadows. The birch trees are typically cut when they are 15-20 years old. Regularly topped birch rots easily and seldom exceeds 50 years. The capacity to grow shoots depends on the age of the tree, site and time of the cutting. The risk for rotting can be decreased by removing only part of the shoots and cutting the shoots a short distance from the base of the shoot. Collecting leaf fodder decreased in Finland, and was common only in the South-West Finland and Åland.
The PDF includes a summary in German.
The article deals with outer characters of a pine from Patsjoki-river, in Finnish Lapland (Pinus silvestris L. var. lapponica (Fr.) Hn.). The tables describe the length of the needles, length of the shoots, branching and inflorescence. The statistical calculations of the data are based on W. Johannsen’s (Elemente der exakten Erblichkeitslehre, Jena 1909) (Elements of exact genetics) methods. The results cannot be generalized because of the insufficient amount of data.
The study area is state owned forest of Vesijako in southern middle Finland that has earlier been intensively managed with slash-and-burn agriculture. Reforestation of broad-leaved forests into coniferous forest with controlled burning has been studied on 76 sample plots.
The article describes the practice of leasing forest stands to leaseholders who executed the controlled burning and forest regeneration and management according a leasing contract. The results of the reforestation with coniferous trees shows that sowed pine (Pinus silvestris) stands give good results but spruce (Picea abies) must be planted as a seedling. For the state this method of forest improvement is cost effective and should be used more widely.
Male flowering was studied at the canopy level in 10 silver birch (Betula pendula Roth) stands from 8 localities and 14 downy birch (B. pubescens Ehrh.) stands from 10 localities in Finland in 1963–73. Distribution of cumulative pollen catches was compared to the normal Gaussian distribution. The basis for timing of flowering was the 50% point of the anthesis-fitted normal distribution. To eliminate effects of background pollen, only the central, normally distributed part of the cumulative distribution was used. Development was measured and tested in calendar days, in degree days (> 5°C) and in period units. The count of the parameters began in March 19.
Male flowering in silver birch occurred from late April to late June depending on latitude, and flowering in downy birch took place from early May to early July. The heat sums needed for male flowering varied in downy birch stands latitudinally but there was practically no latitudinal variation in silver birch flowering. The amount of male flowering in stands of the both species were found to have a large annual variation but without any clear periodicity.
The between years pollen catch variation in stands of either birch species did not show any significant latitudinal correlation in contrast to Norway spruce stands. The period unit heat sum gave the most accurate forecast of the timing of flowering for 60% of the silver birch stands and for 78.6% of the downy birch stands. Silver birch seems to have a local inclination for a more fixed flowering date compared to downy birch, which could mean a considerable photoperiodic influence on flowering time of silver birch. The species had different geographical correlations.
Frequent hybridization of the birch species occurs more often in Northern Finland than in more southerly latitudes. The different timing in the flowering causes increasing scatter in flowering times in the north, especially in the case of downy birch. Thus, the change of simultaneous flowering of the species increases northwards due to a more variable climate and higher altitudinal variation. Compared with conifers, the reproduction cycles of the two birch species were found to be well protected from damage by frost.
The premises of several models obtained from literature on bud dormancy release in trees from cool and temperate regions differs from each other with respect to responses to air temperature during the rest period of the buds. The predicted timing of bud burst in natural conditions varied among the models, as did the prediction of the models for the outcome of a chilling experiment.
Experimental results with two-year old seedlings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) did not agree with any of the models. The experimental results also deviated from abundand earlier findings, which also disagreed with any of the models. This finding suggests that Finnish provenances of Scots pine and Norway spruce differ from more southern provenances with respect to temperature regulation of bud dormancy release.
A synthesis model for the effects of air temperature on bud dormancy release in trees was developed on the basis of the previous models and the experimental results of both the present and previous studies. The synthesis model contains part of the original models as special cases. The parameters of the synthesis model represent several aspects of the bud dormancy release of trees that should be addressed separately with each species and provenance in experimental studies. Further aspects of dormancy release were discussed, in order to facilitate further development of the models.
The PDF includes a summary in Finnish.
At the beginning of the investigation period the total biomass of the Scots pine (Pinus sylvestris L.) stands on the ordinary sedge pine mire was 48 t/ha. The biomass of the mixed stands of Scots pine and birch (Betula pubescens Erhr.) on the herbrich sedge pine mire was 91 t/ha, out of which 60% was from pine. The biomass of the Norway spruce (Picea abies (L.) H. Karst.) on the Vaccinium-Myrtillus spruce mire was 148 t/ha. The average annual net increment of the stand biomass was 5.8 t/ha in the unfertilized pine stand and 6.7 t/ha in the NPK and micronutrient fertilized one during the six-year investigation period. The corresponding figures in the mixed stand were 7.2 t/ha and 7.6 t/ha. The net increment of the biomass in the unfertilized spruce stand was 6.9 t/ha and in the fertilized 8.4 t/ha. A considerable proportion of the net increment was lost to the ground as litter in all stands.
The nitrogen, phosphorus, potassium, magnesium, iron, manganese, zinc, copper and boron cycles were investigated. The annual nitrogen uptake from the soil was 26–42 kg/ha, that of phosphorus 2.5–3.4 kg/ha, potassium 4.5–12 kg/ha, calcium 12–29 kg/ha, magnesium 2–4 kg/ha, iron 1.4–6.6 kg/ha, manganese less than 2 kg/ha and the other nutrients only some grams. Only part of the fertilized nutrients was fixed in the stand.
The PDF includes a summary in Finnish.
Mixed forests are known for their ability to provide a wide range of ecosystem services. Such forests have higher biodiversity compared to monocultures, are resilient against disturbances and may mitigate the effects of climate change. Despite well-known benefits, there is still little information on how these forests should be established and managed. The aim of this study was to describe the early growth dynamics of current boreal young mixed stands of planted Norway spruces (Picea abies (L.) Karst.) and naturally regenerated birches (Betula spp.). We collected data from 9 stands planted for spruce 8–14 years ago in Southern and Central Finland. Stem analysis was conducted to 144 spruces and to 144 birches to determine previous growth. We modelled the height and diameter development of individual trees in relation to tree age at stump height using non-linear mixed Chapman-Richards model. There were no significant differences between spruce and seed-origin birch in diameter growth at stump height, but the initial height increments of natural birches were larger than those of planted spruces. However, planted spruces were able to keep up with the height development of birches, if spruces received a head start over naturally regenerated seed-origin birch for two growing seasons. Thus, naturally regenerated birch admixture can be utilized to establish single-storied spruce-birch mixtures, and the admixture should be retained during the early cleaning of planted spruce stands.
Timber production and profitability were evaluated for spontaneously-regenerated mixtures on two formerly clearcut areas. The abandoned areas developed into birch-dominated (Betula pendula Roth and Betula pubescens Ehrh.) stands with successional ingrowth of Norway spruce (Picea abies (L.) H. Karst.). An experiment with randomized treatments within blocks was established, using three management strategies and one unthinned control, resulting in variation in optimal rotation age, merchantable volume and species composition. The management strategies were evaluated based on total production (volume) by using measured growth data 42 years after clearcutting and the modelled future stand development. The long-term effects of spontaneous regeneration and management strategies were evaluated based on land expectation value (LEV) and compared with a fifth management strategy using artificial regeneration and intense thinnings. 12 years after treatment, at a stand age of 42 years, the unthinned control had produced the highest total stem volume. At interest rates of 2% or higher, the unmanaged forest was an economically viable strategy, even compared to an intensive management strategy with a preferred merchantable timber species. Interest rates clearly impacted the profitability of the different management strategies. This study shows that when spontaneous regeneration is successful and dense, the first competition release can have a high impact on the development of future crop trees and on the species mixture.
Novel information on silver birch (Betula pendula Roth) foliar element contents and their seasonal, between-habitat and leaf level variations are provided by applying fine-scaled element mapping with micro X-ray fluorescence. In the monthly leaf samples collected from May to October from six different habitats, pairwise scatter plots and Spearman’s rank correlations showed statistically significant positive correlations between Si, Al and Fe, and covariations between also many other pairs of elements. Of the ten elements studied, seven showed statistically significant changes in their average levels between May and June. The contents of P, S and K decreased in most habitats during the later season, whereas Ca and in some habitats also Mn and Zn increased. Comparing habitats, trees in the limestone habitat had relatively low content of Mg, strongly increasing levels of P until the late season, and high content of Ca and Fe. Other habitats also revealed distinctive particularities in their foliar elements, such as a high relative content of S and a low content of Ca at the seashore. Mn was high in three habitats, possibly due to bedrock characteristics. Except for P, the contents of all elements diverged between the midrib and other leaf areas. Zn content was particularly high in the leaf veins. Mn levels were highest at the leaf margins, indicating a possible sequestration mechanism for this potentially harmful element. Si may help to alleviate the metallic toxicities of Al and Fe. Because the growing season studied was dry, some trees developed symptoms of drought stress. The injured leaf parts had reduced levels of P, S and K, suggesting translocation of these nutrients before permanent damage.
We studied the spatial decomposition rates of standardised organic substrates in soils (burned boreal pine-dominated sub-xeric forests in eastern Finland), with respect to charred and non-charred coarse woody debris (CWD). Decomposition rates of rooibos plant litter inside teabags (C:N = 42.870 ± 1.841) and pressed-sheet Nordic hardwood pulp (consisting of mainly alpha-cellulose) were measured at 0.2 m distance from 20 charred (LC0.2) and 40 non-charred logs (LNC0.2). We also measured decomposition at 60 plots located 3–10 m away from downed logs (L3,10). The rooibos decomposition rate constant ‘k’ was 8.4% greater at the LNC0.2 logs than at the L3,10 or LC0.2 logs. Cellulose decomposed more completely in 1 micron mesh bags at LNC0.2 (44% of buried bags had leftover material) than at LC0.2 (76%) or L3,10 (70%). Decomposition of cellulose material was rapid but varied greatly between sampling plots. Our results indicate that decomposition of the standardised organic matter was more rapid close to CWD pieces than further away. However, only the plots located near non-charred logs (LNC0.2) exhibited high decomposition rates, with no corresponding increase observed at the charred logs (LC0.2). This suggests a possible noteworthy indirect effect of forest burning on soil organic matter (SOM) decomposition rates close to charred CWD after forest fires. We urge for more studies on this tentative observation as it may affect the estimates on how fires affect carbon cycling in forests.
The aim of this study was to develop individual-tree diameter and height growth models for Scots pine, Norway spruce, and pubescent birch growing in drained peatlands in Finland. Trees growing in peatland sites have growth patterns that deviate from that of trees growing in mineral soil sites. Five-year growth was explained by tree diameter, different tree and stand level competition measures, management operations and site characteristics. The drainage status of the site was influencing growth directly or in interaction with other variables. Site quality had a direct impact but was also commonly related to current site drainage status (need for ditch maintenance). Recent thinning increased growth of all species and former PK fertilization increased growth of pine and birch. Temperature sum was a significant predictor in all models and altitude for spruce and birch. The data were a subsample of the 7th National Forest Inventory (NFI) sample plots representing northern and southern Finland and followed by repeated measurements for 15–20 yrs. Growth levels predicted by the models were calibrated using NFI11 data to remove bias originating from the sample of the modelling data. The mixed linear models technique was used in model estimation. The models will be incorporated into the MOTTI stand simulator to replace the current peatlands growth models.
The main aim of the current study was to estimate the annual net nitrogen mineralization (NNM) flux in stands of different tree species growing on drained peatlands, as well as to clarify the effect of tree species, soil properties and litter on annual NNM dynamics. Three study sites were set up in May 2014: a downy birch (Betula pubescens Ehrh.) stand and a Norway spruce (Picea abies (L.) Karst.) stand in Oxalis full-drained swamp (ODS) and a Scots pine (Pinus sylvestris L.) stand in Myrtillus full-drained swamp (MDS). The NNM flux was estimated using the in situ method with incubated polyethylene bags. The highest value of NNM was found in stands that were growing on fertile ODS: 127.5 kg N ha–1 yr–1 and 87.7 kg N ha–1 yr–1, in the downy birch stand and in the Norway spruce stand, respectively. A significantly lower annual NNM flux (11.8 kg N ha–1 yr–1) occurred in the Scots pine stand growing in MDS. Nitrification was highest at fertile ODS sites and ammonification was the highest at the low fertility MDS site. For all study sites, positive correlation was found between soil temperature and NNM intensity. The difference in annual NNM between the downy birch stand and the Norway spruce stand growing on similar drained fertile peatlands was due to litter quality. The annual N input into the soil through leaf litter was the highest at the downy birch site where also the C/N ratio of litter was the lowest. The second highest N input into the soil was found in the spruce stand and the lowest in the pine stand.
Downy birch (Betula pubescens Ehrh.) stands on drained peatlands are often considered useless because they typically do not yield good-quality sawn timber. However, covering an area of ca. 0.5 million hectares and with total yields of up to 250 m3 ha–1, downy birch stands on peatlands in Finland have a potential for pulpwood and/or energy wood production. We examined the financial performance of alternative management regimes (with or without thinnings, different thinning intensities, several rotation lengths) combined with alternative harvesting methods (pulpwood, energy wood, or integrated, energy wood being delimbed stems or whole trees). We used data from 19 experimental stands, monitored for 20–30 years. For harvesting removals we considered both actual thinning removals and final-cutting removals with alternative timings that were based on the monitoring data. We assessed the profitability as a combination of the net present value of the birch generation and the bare land value of future generations of Norway spruce (Picea abies (L.) Karst.). The most profitable management was growing without thinnings until whole-tree final cutting at the stand age of 40–45 years with an advanced multi-tree harvesting method. In contrast, the standard method in whole-tree final cutting resulted in the lowest profitability, and an integrated method with the energy wood as delimbed stems was the best of the standard methods. Thinnings were unprofitable especially when aiming to produce energy wood, whereas aiming for pulpwood, light precommercial thinning was competitive. Commercial thinning at the traditional “pulpwood stage” had little effect on profitability. The best stand age for final cutting was 40–65 years – earlier for very dense stands and whole-tree energy wood harvesting with advanced method, later for precommercially thinned stands and pulpwood harvesting.
Forest ecological restoration by burning is widely applied to promote natural, early-successional sites and increase landscape biodiversity. Burning is also used as a forest management practice to facilitate forest regeneration after clearcutting. Besides the desired goals, restoration burnings also affect soil biogeochemistry, particularly soil organic matter (SOM) and related soil carbon stocks but the long-term effects are poorly understood. However, in order to study these effects, a reliable estimate of spatial variability is first needed for effective sampling. Here we investigate spatial variability of SOM and vegetation features 13 years after burnings and in combination with variable harvest levels. We sampled four experimental sites representing distinct management and restoration treatments with an undisturbed control. While variability of vegetation cover and biomass was generally higher in disturbed sites, soil parameter variability was not different between the four sites. The joint ecological patterns of soil and vegetation parameters across the whole sample continuum support well the prior assumptions on the characteristic disturbance conditions within each of the study sites. We designed and employed statistical simulations as a means to plan prospective sampling. Sampling six forest sites for each treatment type with 30 independent soil cores per site would provide enough statistical power to adequately capture the impacts of burning on SOM based on the data we obtained here and statistical simulations. In conclusion, we argue that an informed design-based approach to documenting the ecosystem effects of forest burnings is worth applying both through obtaining new data and meta-analysing the existing.